Wang Y et al. (DEC 2012)
Circulation research 111 12 1494--1503
Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging
RATIONALE: Molecular imaging has proven to be a vital tool in the characterization of stem cell behavior in vivo. However,the integration of reporter genes has typically relied on random integration,a method that is associated with unwanted insertional mutagenesis and positional effects on transgene expression.backslashnbackslashnOBJECTIVE: To address this barrier,we used genome editing with zinc finger nuclease (ZFN) technology to integrate reporter genes into a safe harbor gene locus (PPP1R12C,also known as AAVS1) in the genome of human embryonic stem cells and human induced pluripotent stem cells for molecular imaging.backslashnbackslashnMETHODS AND RESULTS: We used ZFN technology to integrate a construct containing monomeric red fluorescent protein,firefly luciferase,and herpes simplex virus thymidine kinase reporter genes driven by a constitutive ubiquitin promoter into a safe harbor locus for fluorescence imaging,bioluminescence imaging,and positron emission tomography imaging,respectively. High efficiency of ZFN-mediated targeted integration was achieved in both human embryonic stem cells and induced pluripotent stem cells. ZFN-edited cells maintained both pluripotency and long-term reporter gene expression. Functionally,we successfully tracked the survival of ZFN-edited human embryonic stem cells and their differentiated cardiomyocytes and endothelial cells in murine models,demonstrating the use of ZFN-edited cells for preclinical studies in regenerative medicine.backslashnbackslashnCONCLUSION: Our study demonstrates a novel application of ZFN technology to the targeted genetic engineering of human pluripotent stem cells and their progeny for molecular imaging in vitro and in vivo.
View Publication
Smith BW et al. ( 2016)
Stem Cells International 2016 2574152
Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages,we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs) to incorporate a reporter cassette at the transcription start site of one of its canonical targets,cytochrome P450 1A1 (CYP1A1). This cell line faithfully reports on CYP1A1 expression,with luciferase levels as its functional readout,when treated with an endogenous AHR ligand (FICZ) at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands,and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed,this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR.
View Publication
Martinez RA et al. (MAY 2015)
Nucleic acids research 43 10 e65
Genome engineering of isogenic human ES cells to model autism disorders
Isogenic pluripotent stem cells are critical tools for studying human neurological diseases by allowing one to study the effects of a mutation in a fixed genetic background. Of particular interest are the spectrum of autism disorders,some of which are monogenic such as Timothy syndrome (TS); others are multigenic such as the microdeletion and microduplication syndromes of the 16p11.2 chromosomal locus. Here,we report engineered human embryonic stem cell (hESC) lines for modeling these two disorders using locus-specific endonucleases to increase the efficiency of homology-directed repair (HDR). We developed a system to: (1) computationally identify unique transcription activator-like effector nuclease (TALEN) binding sites in the genome using a new software program,TALENSeek,(2) assemble the TALEN genes by combining golden gate cloning with modified constructs from the FLASH protocol,and (3) test the TALEN pairs in an amplification-based HDR assay that is more sensitive than the typical non-homologous end joining assay. We applied these methods to identify,construct,and test TALENs that were used with HDR donors in hESCs to generate an isogenic TS cell line in a scarless manner and to model the 16p11.2 copy number disorder without modifying genomic loci with high sequence similarity.
View Publication
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently,the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique,we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified by the screen,we further describe strategies for confirming the screening phenotype,as well as genetic perturbation,through analysis of indel rate and transcriptional activation. Beginning with library design,a genome-scale screen can be completed in 9-15 weeks,followed by 4-5 weeks of validation.
View Publication
Alisch RS et al. ( 2013)
BMC medical genetics 14 1 18
Genome-wide analysis validates aberrant methylation in fragile X syndrome is specific to the FMR1 locus.
BACKGROUND: Fragile X syndrome (FXS) is a common form of inherited intellectual disability caused by an expansion of CGG repeats located in the 5' untranslated region (UTR) of the FMR1 gene,which leads to hypermethylation and silencing of this locus. Although a dramatic increase in DNA methylation of the FMR1 full mutation allele is well documented,the extent to which these changes affect DNA methylation throughout the rest of the genome has gone unexplored. METHODS: Here we examined genome-wide methylation in both peripheral blood (N = 62) and induced pluripotent stem cells (iPSCs; N = 10) from FXS individuals and controls. RESULTS: We not only found the expected significant DNA methylation differences in the FMR1 promoter and 5' UTR,we also saw that these changes inverse in the FMR1 gene body. Importantly,we found no other differentially methylated loci throughout the remainder of the genome,indicating the aberrant methylation of FMR1 in FXS is locus-specific. CONCLUSIONS: This study provides a comprehensive methylation profile of FXS and helps refine our understanding of the mechanisms behind FMR1 silencing.
View Publication
Zhu J et al. (JAN 2013)
Cell 152 3 642--654
Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues
Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background,yet the landscapes of in vivo tissues remain largely uncharted. Here,we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages,lineages,and cellular environments. They also reveal global features of the epigenome,related to nuclear architecture,that also vary across cellular phenotypes. Specifically,developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture,and discuss their implications for lineage fidelity,cellular senescence,and reprogramming. ?? 2013 Elsevier Inc.
View Publication
Akdemir KC et al. (JAN 2014)
Nucleic Acids Research 42 1 205--223
Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells
How tumor suppressor p53 selectively responds to specific signals,especially in normal cells,is poorly understood. We performed genome-wide profiling of p53 chromatin interactions and target gene expression in human embryonic stem cells (hESCs) in response to early differentiation,induced by retinoic acid,versus DNA damage,caused by adriamycin. Most p53-binding sites are unique to each state and define stimulus-specific p53 responses in hESCs. Differentiation-activated p53 targets include many developmental transcription factors and,in pluripotent hESCs,are bound by OCT4 and NANOG at chromatin enriched in both H3K27me3 and H3K4me3. Activation of these genes occurs with recruitment of p53 and H3K27me3-specific demethylases,UTX and JMJD3,to chromatin. In contrast,genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in cell death and cell cycle regulation are conserved in both DNA damage and differentiation. Comparative genomic analysis of p53-targets in mouse and human ESCs supports an inter-species divergence in p53 regulatory functions during evolution. Our findings expand the registry of p53-regulated genes to define p53-regulated opposition to pluripotency during early differentiation,a process highly distinct from stress-induced p53 response in hESCs.
View Publication
Grandy RA et al. (FEB 2015)
Molecular and Cellular Biology 36 December MCB.00877--15
Genome-wide Studies Reveal that H3K4me3 Modification in Bivalent Genes is Dynamically Regulated During the Pluripotent Cell Cycle and Stabilized Upon Differentiation
textlessptextgreaterStem cell phenotypes are reflected by post-translational histone modifications,and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs),bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remains to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2,mitotic,and G1 phases of the cell cycle,we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle–dependent fashion. Interestingly,bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore,the histone-modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle–independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in maintenance of pluripotency.textless/ptextgreater
View Publication
Yeo HC et al. (AUG 2016)
Scientific reports 6 31068
Genome-Wide Transcriptome and Binding Sites Analyses Identify Early FOX Expressions for Enhancing Cardiomyogenesis Efficiency of hESC Cultures.
The differentiation efficiency of human embryonic stem cells (hESCs) into heart muscle cells (cardiomyocytes) is highly sensitive to culture conditions. To elucidate the regulatory mechanisms involved,we investigated hESCs grown on three distinct culture platforms: feeder-free Matrigel,mouse embryonic fibroblast feeders,and Matrigel replated on feeders. At the outset,we profiled and quantified their differentiation efficiency,transcriptome,transcription factor binding sites and DNA-methylation. Subsequent genome-wide analyses allowed us to reconstruct the relevant interactome,thereby forming the regulatory basis for implicating the contrasting differentiation efficiency of the culture conditions. We hypothesized that the parental expressions of FOXC1,FOXD1 and FOXQ1 transcription factors (TFs) are correlative with eventual cardiomyogenic outcome. Through WNT induction of the FOX TFs,we observed the co-activation of WNT3 and EOMES which are potent inducers of mesoderm differentiation. The result strengthened our hypothesis on the regulatory role of the FOX TFs in enhancing mesoderm differentiation capacity of hESCs. Importantly,the final proportions of cells expressing cardiac markers were directly correlated to the strength of FOX inductions within 72 hours after initiation of differentiation across different cell lines and protocols. Thus,we affirmed the relationship between early FOX TF expressions and cardiomyogenesis efficiency.
View Publication
Yang L et al. (JAN 2011)
Genome Biology 12 2 R16
Genomewide characterization of non-polyadenylated RNAs.
BACKGROUND: RNAs can be physically classified into poly(A)+ or poly(A)- transcripts according to the presence or absence of a poly(A) tail at their 3' ends. Current deep sequencing approaches largely depend on the enrichment of transcripts with a poly(A) tail,and therefore offer little insight into the nature and expression of transcripts that lack poly(A) tails. RESULTS: We have used deep sequencing to explore the repertoire of both poly(A)+ and poly(A)- RNAs from HeLa cells and H9 human embryonic stem cells (hESCs). Using stringent criteria,we found that while the majority of transcripts are poly(A)+,a significant portion of transcripts are either poly(A)- or bimorphic,being found in both the poly(A)+ and poly(A)- populations. Further analyses revealed that many mRNAs may not contain classical long poly(A) tails and such messages are overrepresented in specific functional categories. In addition,we surprisingly found that a few excised introns accumulate in cells and thus constitute a new class of non-polyadenylated long non-coding RNAs. Finally,we have identified a specific subset of poly(A)- histone mRNAs,including two histone H1 variants,that are expressed in undifferentiated hESCs and are rapidly diminished upon differentiation; further,these same histone genes are induced upon reprogramming of fibroblasts to induced pluripotent stem cells. CONCLUSIONS: We offer a rich source of data that allows a deeper exploration of the poly(A)- landscape of the eukaryotic transcriptome. The approach we present here also applies to the analysis of the poly(A)- transcriptomes of other organisms.
View Publication