Ausubel LJ et al. (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 767 147--159
GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
Human pluripotent stem cells (PSCs),which include human embryonic stem cells (ESCs) as well as induced pluripotent stem cells (iPSCs),represent an important source of cellular therapies in regenerative medicine and the study of early human development. As such,it is becoming increasingly important to develop methods for the large-scale banking of human PSC lines. There are several well-established methods for the propagation of human PSCs. The key to development of a good manufacturing practice (GMP) bank is to determine a manufacturing method that is amenable to large-scale production using materials that are fully documented. We have developed several banks of hESCs using animal feeder cells,animal-based matrices,or animal-free matrices. Protocols for growing hESCs on mouse embryonic fibroblasts (MEFs) are well established and are very helpful for producing research grade banks of cells. As most human ESCs cultured by research laboratories have been exposed to xenogeneic reagents,it is not imperative that all materials used in the production of a master cell bank be animal-free in origin. Nevertheless,as the field develops,it will no doubt become increasingly important to produce a bank of cells for clinical use without xenogeneic reagents,particularly nonhuman feeder cells which might harbor viruses with potential risk to human health or cell product integrity. Thus,even for cell lines previously exposed to xenogeneic reagents,it is important to minimize any subsequent exposure of the cell lines to additional adventitious agents. We have specifically described procedures for the growth of hESCs on Matrigel,an animal-matrix,and CELLstart,an animal-free matrix,and these can be used to produce hESCs as part of a clinical manufacturing process.
View Publication
Koh S et al. (MAR 2013)
Stem cells and development 22 6 951--63
Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts.
In mice and humans,it has been shown that embryonic and adult fibroblasts can be reprogrammed into pluripotency by introducing 4 transcription factors,Oct3/4,Klf4,Sox2,and c-Myc (OKSM). Here,we report the derivation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts by retroviral OKSM transduction. The isolated canine iPSCs (ciPSCs) were expanded in 3 different culture media [fibroblast growth factor 2 (FGF2),leukemia inhibitory factor (LIF),or FGF2 plus LIF]. Cells cultured in both FGF2 and LIF expressed pluripotency markers [POU5F1 (OCT4),SOX2,NANOG,and LIN28] and embryonic stem cell (ESC)-specific genes (PODXL,DPPA5,FGF5,REX1,and LAMP1) and showed strong levels of alkaline phosphatase expression. In vitro differentiation by formation of embryoid bodies and by directed differentiation generated cell derivatives of all 3 germ layers as confirmed by mRNA and protein expression. In vivo,the ciPSCs created solid tumors,which failed to reach epithelial structure formation,but expressed markers for all 3 germ layers. Array comparative genomic hybridization and chromosomal fluorescence in situ hybridization analyses revealed that while retroviral transduction per se did not result in significant DNA copy number imbalance,there was evidence for the emergence of low-level aneuploidy during prolonged culture or tumor formation. In summary,we were able to derive ciPSCs from adult fibroblasts by using 4 transcription factors. The isolated iPSCs have similar characteristics to ESCs from other species,but the exact cellular mechanisms behind their unique co-dependency on both FGF2 and LIF are still unknown.
View Publication
Patel R and Alahmad AJ ( 2016)
Fluids and barriers of the CNS 13 6
BACKGROUND Patient-derived induced pluripotent stem cells (iPSCs) are an innovative source as an in vitro model for neurological diseases. Recent studies have demonstrated the differentiation of brain microvascular endothelial cells (BMECs) from various stem cell sources,including iPSC lines. However,the impact of the culturing conditions used to maintain such stem cell pluripotency on their ability to differentiate into BMECs remains undocumented. In this study,we investigated the effect of different sources of Matrigel and stem cell maintenance medium on BMEC differentiation efficiency. METHODS The IMR90-c4 iPSC line was maintained on mTeSR1 or in essential-8 (E-8) medium on growth factor-reduced (GFR) Matrigel from three different manufacturers. Cells were differentiated into BMECs following published protocols. The phenotype of BMEC monolayers was assessed by immunocytochemistry. Barrier function was assessed by transendothelial electrical resistance (TEER) and permeability to sodium fluorescein,whereas the presence of drug efflux pumps was assessed by uptake assay using fluorescent substrates. RESULTS Stem cell maintenance medium had little effect on the yield and barrier phenotype of IMR90-derived BMECs. The source of GFR-Matrigel used for the differentiation process significantly impacted the ability of IMR90-derived BMECs to form tight monolayers,as measured by TEER and fluorescein permeability. However,the Matrigel source had minimal effect on BMEC phenotype and drug efflux pump activity. CONCLUSION This study supports the ability to differentiate BMECs from iPSCs grown in mTeSR1 or E-8 medium and also suggests that the origin of GFR-Matrigel has a marked inpact on BMEC barrier properties.
View Publication
Kitajima K et al. (JAN 2016)
Experimental hematology 44 1 10--68
GSK3$\$ activates the CDX/HOX pathway and promotes hemogenic endothelial progenitor differentiation from human pluripotent stem cells.
WNT/$\$-CATENIN signaling promotes the hematopoietic/endothelial differentiation of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs). The transient addition of a GSK3$\$ (GSKi) has been found to facilitate in vitro endothelial cell differentiation from hESCs/hiPSCs. Because hematopoietic and endothelial cells are derived from common progenitors (hemogenic endothelial progenitors [HEPs]),we examined the effect of transient GSKi treatment on hematopoietic cell differentiation from hiPSCs. We found that transient GSKi treatment at the start of hiPSC differentiation induction altered the gene expression profile of the cells. Multiple CDX/HOX genes,which are expressed in the posterior mesoderm of developing embryos,were significantly upregulated by GSKi treatment. Further,inclusion of the GSKi in a serum- and stroma-free culture with chemically defined medium efficiently induced HEPs,and the HEPs gave rise to various lineages of hematopoietic and endothelial cells. Therefore,transient WNT/$\$-CATENIN signaling triggers activation of the CDX/HOX pathway,which in turn confers hemogenic posterior mesoderm identity to differentiating hiPSCs. These data enhance our understanding of human embryonic hematopoietic/endothelial cell development and provide a novel in vitro system for inducing the differentiation of hematopoietic cells from hiPSCs.
View Publication
H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions.
BACKGROUND: The histone variant H2A.Z has been implicated in nucleosome exchange,transcriptional activation and Polycomb repression. However,the relationships among these seemingly disparate functions remain obscure.backslashnbackslashnRESULTS: We mapped H2A.Z genome-wide in mammalian ES cells and neural progenitors. H2A.Z is deposited promiscuously at promoters and enhancers,and correlates strongly with H3K4 methylation. Accordingly,H2A.Z is present at poised promoters with bivalent chromatin and at active promoters with H3K4 methylation,but is absent from stably repressed promoters that are specifically enriched for H3K27 trimethylation. We also characterized post-translational modification states of H2A.Z,including a novel species dually-modified by ubiquitination and acetylation that is enriched at bivalent chromatin.backslashnbackslashnCONCLUSIONS: Our findings associate H2A.Z with functionally distinct genomic elements,and suggest that post-translational modifications may reconcile its contrasting locations and roles.
View Publication
Sugimura R et al. (MAY 2017)
Nature 545 7655 432--438
Haematopoietic stem and progenitor cells from human pluripotent stem cells.
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens,or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here,to yield functional human haematopoietic stem cells,we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG,HOXA5,HOXA9,HOXA10,LCOR,RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid,B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.
View Publication
Mattis VB et al. (JUN 2014)
Human Molecular Genetics 24 11 3257--3271
HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity
Huntington's disease (HD) is a fatal neurodegenerative disease,caused by expansion of polyglutamine repeats in the Huntingtin gene,with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however,the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines,which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity,as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed,blocking glutamate signaling,not just through the NMDA but also mGlu and AMPA/Kainate receptors,completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together,these results provide important insight into HD mechanisms at early developmental time points,which may suggest novel approaches to HD therapeutics.
View Publication
Jalan-Sakrikar N et al. ( 2016)
PloS one 11 12 e0168266
Hedgehog Signaling Overcomes an EZH2-Dependent Epigenetic Barrier to Promote Cholangiocyte Expansion.
BACKGROUND & AIMS Developmental morphogens play an important role in coordinating the ductular reaction and portal fibrosis occurring in the setting of cholangiopathies. However,little is known about how membrane signaling events in ductular reactive cells (DRCs) are transduced into nuclear transcriptional changes to drive cholangiocyte maturation and matrix deposition. Therefore,the aim of this study was to investigate potential mechanistic links between cell signaling events and epigenetic regulators in DRCs. METHODS Using directed differentiation of induced pluripotent stem cells (iPSC),isolated DRCs,and in vivo models,we examine the mechanisms whereby sonic hedgehog (Shh) overcomes an epigenetic barrier in biliary precursors and promotes both cholangiocyte maturation and deposition of fibronectin (FN). RESULTS We demonstrate,for the first time,that Gli1 influences the differentiation state and fibrogenic capacity of iPSC-derived hepatic progenitors and isolated DRCs. We outline a novel pathway wherein Shh-mediated Gli1 binding in key cholangiocyte gene promoters overcomes an epigenetic barrier conferred by the polycomb protein,enhancer of zeste homolog 2 (EZH2) and initiates the transcriptional program of cholangiocyte maturation. We also define previously unknown functional Gli1 binding sites in the promoters of cytokeratin (CK)7,CK19,and FN. Our in vivo results show that EZH2 KO mice fed the choline-deficient,ethanolamine supplemented (CDE) diet have an exaggerated cholangiocyte expansion associated with more robust ductular reaction and increased peri-portal fibrosis. CONCLUSION We conclude that Shh/Gli1 signaling plays an integral role in cholangiocyte maturation in vitro by overcoming an EZH2-dependent epigenetic barrier and this mechanism also promotes biliary expansion in vivo.
View Publication
Wang L et al. (MAY 2016)
Nature neuroscience 19 7 888--96
Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex.
The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex,which reflects the expansion of neural progenitors,especially basal progenitors including basal radial glia (bRGs) and intermediate progenitor cells (IPCs). We found that constitutively active Sonic hedgehog (Shh) signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex,whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but Shh signaling was not strongly active in the mouse embryonic neocortex,and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically,Shh signaling increased the initial generation and self-renewal of bRGs and IPC proliferation in mice and the initial generation of bRGs in human cerebral organoids. Thus,robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding.
View Publication
Yang Y et al. (MAY 2015)
Proceedings of the National Academy of Sciences of the United States of America 112 18 E2337--------46
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure
Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here,we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074),followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG,can be propagated clonally on either Matrigel or gelatin,and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG,LEFTY1,and LEFTY2). In nonconditioned medium lacking FGF2,the colonies spontaneously differentiated along multiple lineages,including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast,and especially syncytiotrophoblast,whereas an A83-01/PD173074 combination favored increased expression of HLA-G,a marker of extravillous trophoblast. Together,these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo.
View Publication