Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential.
Embryonic stem (ES) cells have the potential to serve as an alternative source of hematopoietic precursors for transplantation and for the study of hematopoietic cell development. Using coculture of human ES (hES) cells with OP9 bone marrow stromal cells,we were able to obtain up to 20% of CD34+ cells and isolate up to 10(7) CD34+ cells with more than 95% purity from a similar number of initially plated hES cells after 8 to 9 days of culture. The hES cell-derived CD34+ cells were highly enriched in colony-forming cells,cells expressing hematopoiesis-associated genes GATA-1,GATA-2,SCL/TAL1,and Flk-1,and retained clonogenic potential after in vitro expansion. CD34+ cells displayed the phenotype of primitive hematopoietic progenitors as defined by co-expression of CD90,CD117,and CD164,along with a lack of CD38 expression and contained aldehyde dehydrogenase-positive cells as well as cells with verapamil-sensitive ability to efflux rhodamine 123. When cultured on MS-5 stromal cells in the presence of stem cell factor,Flt3-L,interleukin 7 (IL-7),and IL-3,isolated CD34+ cells differentiated into lymphoid (B and natural killer cells) as well as myeloid (macrophages and granulocytes) lineages. These data indicate that CD34+ cells generated through hES/OP9 coculture display several features of definitive hematopoietic stem cells.
View Publication
Leydon C et al. (OCT 2013)
Tissue Engineering Part A 19 19-20 2233--2241
Human embryonic stem cell-derived epithelial cells in a novel in vitro model of vocal mucosa.
A satisfactory in vitro model of vocal fold mucosa does not exist,thus precluding a systematic,controlled study of vocal fold biology and biomechanics. We sought to create a valid,reproducible three-dimensional (3D) in vitro model of human origin of vocal fold mucosa of human origin. We hypothesized that coculture of human embryonic stem cell (hESC)-derived simple epithelial cells with primary vocal fold fibroblasts under appropriate conditions would elicit morphogenesis of progenitor cells into vocal fold epithelial-like cells and creation of a basement membrane. Using an in vitro prospective study design,hESCs were differentiated into cells that coexpressed the simple epithelial cell marker,keratin 18 (K18),and the transcription factor,p63. These simple epithelial cells were cocultured with primary vocal fold fibroblasts seeded in a collagen gel scaffold. The cells were cultured for 3 weeks in a keratinocyte medium at an air–liquid interface. After that time,the engineered mucosa demonstrated a stratified,squamous epithelium and a continuous basement membrane recapitulating the key morphologic and phenotypic characteristics of native vocal fold mucosa. hESC-derived epithelial cells exhibited positive staining for vocal fold stratified,squamous epithelial markers,keratin 13 (K13) and 14 (K14),as well as tight junctions,adherens junctions,gap junctions,and desmosomes. Despite the presence of components critical for epithelial structural integrity,the epithelium demonstrated greater permeability than native tissue indicating compromised functional integrity. While further work is warranted to improve functional barrier integrity,this study demonstrates that hESC-derived epithelial progenitor cells can be engineered to create a replicable 3D in vitro model of vocal fold mucosa featuring a multilayered,terminally differentiated epithelium.
View Publication
Bak XY et al. (NOV 2011)
Human gene therapy 22 11 1365--77
Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma.
Mesenchymal stem cells (MSCs) possess tumor-tropic properties and consequently have been used to deliver therapeutic agents for cancer treatment. Their potential in cancer therapy highlights the need for a consistent and renewable source for the production of uniform human MSCs suitable for clinical applications. In this study,we seek to investigate whether human embryonic stem cells can be used as a cell source to fulfill this goal. We generated MSC-like cells from two human embryonic stem cell lines,HuES9 and H1,and observed that MSC-like cells derived from human embryonic stem cells were able to migrate into human glioma intracranial xenografts after being injected into the cerebral hemisphere contralateral to the tumor inoculation site. We engineered these cells with baculoviral and lentiviral vectors,respectively,for transient and stable expression of the herpes simplex virus thymidine kinase gene. In tumor-bearing mice the engineered MSC-like cells were capable of inhibiting tumor growth and prolonging survival in the presence of ganciclovir after they were injected either directly into the xenografts or into the opposite hemisphere. Our findings suggest that human embryonic stem cell-derived MSCs may be a viable and attractive alternative for large-scale derivation of targeting vehicles for cancer therapy.
View Publication
Krug AK et al. (JAN 2013)
Archives of Toxicology 87 1 123--143
Human embryonic stem cell-derived test systems for developmental neurotoxicity: A transcriptomics approach
Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death,but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from in vitro tests that allow the identification of toxicant-induced changes of the cellular proteostasis,or of its underlying transcriptome network. Therefore,the ‘human embryonic stem cell (hESC)-derived novel alternative test systems (ESNATS)' European commission research project established RT tests based on defined differentiation protocols of hESC and their progeny. Valproic acid (VPA) and methylmercury (MeHg) were used as positive control compounds to address the following fundamental questions: (1) Does transcriptome analysis allow discrimination of the two compounds? (2) How does analysis of enriched transcription factor binding sites (TFBS) and of individual probe sets (PS) distinguish between test systems? (3) Can batch effects be controlled? (4) How many DNA microarrays are needed? (5) Is the highest non-cytotoxic concentration optimal and relevant for the study of transcriptome changes? VPA triggered vast transcriptional changes,whereas MeHg altered fewer transcripts. To attenuate batch effects,analysis has been focused on the 500 PS with highest variability. The test systems differed significantly in their responses (backslashtextless20 % overlap). Moreover,within one test system,little overlap between the PS changed by the two compounds has been observed. However,using TFBS enrichment,a relatively large ‘common response' to VPA and MeHg could be distinguished from ‘compound-specific' responses. In conclusion,the ESNATS assay battery allows classification of human DNT/RT toxicants on the basis of their transcriptome profiles.
View Publication
Yoon T-MM et al. (SEP 2010)
Stem Cell Reviews and Reports 6 3 425--437
Human embryonic stem cells (hESCs) cultured under distinctive feeder-free culture conditions display global gene expression patterns similar to hESCs from feeder-dependent culture conditions.
Human embryonic stem cell (hESC)-based assay systems and genetically modified hESCs are very useful tools for screening drugs that regulate stemness and differentiation and for studying the molecular mechanisms involved in hESC fate determination. For these types of studies,feeder cell-dependent cultures of hESCs are often problematic because the physiology of the feeder cells is perturbed by the drug treatments or genetic modifications,which potentially obscures research outcomes. In this study,we evaluated three commonly used feeder-free culture conditions to determine whether they supported the undifferentiated growth of hESCs and to determine whether the hESCs grown in these conditions displayed gene expression patterns that were similar to the expression patterns of feeder cell-dependent hESCs. Our results demonstrate that hESCs grown in the three feeder-free conditions expressed undifferentiation marker genes as strongly as hESCs that were grown in the feeder-dependent cultures. Furthermore,genome-wide gene expression profiles indicated that the gene expression patterns of hESCs that were grown under feeder-free or feeder-dependent culture conditions were highly similar. These results indicate that the feeder-free culture conditions support the undifferentiated growth of hESCs as effectively as the feeder-dependent culture conditions. Therefore,feeder-free culture conditions are potentially suitable for drug screening and for the genetic manipulation of hESCs in basic research.
View Publication
Yang Q et al. (NOV 2015)
Stem cell research 15 3 640--642
Human embryonic stem cells derived from abnormal blastocyst donated by Marfan syndrome patient.
Human embryonic stem cell (hESC) line was derived from abnormal blastocyst donated by Marfan syndrome patient after preimpantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that the hESC line carried the heterozygous deletion mutation,c.3536delA,of FBN1 gene. Characteristic tests proved that the hESC line presented typicalmarkers of pluripotency and had the capability to formthe three germlayers both in vitro and in vivo.
View Publication
Ouyang Q et al. (NOV 2016)
Stem cell research 17 3 637--639
Human embryonic stem cells derived from abnormal blastocyst donated by polycystic kidney syndrome patient.
Human embryonic stem cell (hESC) line chHES-468 was derived from abnormal blastocyst donated by polycystic kidney syndrome (PKD) patient after preimplantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that chHES-468 cell line carried a heterozygous mutation,c.1052610527delAG,of PKD1. Characteristic tests proved that the chHES-468 cell line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo.
View Publication
Ma R et al. (APR 2015)
Thyroid 25 4 455--461
Human embryonic stem cells form functional thyroid follicles.
OBJECTIVE: The molecular events that lead to human thyroid cell speciation remain incompletely characterized. It has been shown that overexpression of the regulatory transcription factors Pax8 and Nkx2-1 (ttf-1) directs murine embryonic stem (mES) cells to differentiate into thyroid follicular cells by initiating a transcriptional regulatory network. Such cells subsequently organized into three-dimensional follicular structures in the presence of extracellular matrix. In the current study,human embryonic stem (hES) cells were studied with the aim of recapitulating this scenario and producing functional human thyroid cell lines. METHODS: Reporter gene tagged pEZ-lentiviral vectors were used to express human PAX8-eGFP and NKX2-1-mCherry in the H9 hES cell line followed by differentiation into thyroid cells directed by Activin A and thyrotropin (TSH). RESULTS: Both transcription factors were expressed efficiently in hES cells expressing either PAX8,NKX2-1,or in combination in the hES cells,which had low endogenous expression of these transcription factors. Further differentiation of the double transfected cells showed the expression of thyroid-specific genes,including thyroglobulin (TG),thyroid peroxidase (TPO),the sodium/iodide symporter (NIS),and the TSH receptor (TSHR) as assessed by reverse transcription polymerase chain reaction and immunostaining. Most notably,the Activin/TSH-induced differentiation approach resulted in thyroid follicle formation and abundant TG protein expression within the follicular lumens. On stimulation with TSH,these hES-derived follicles were also capable of dose-dependent cAMP generation and radioiodine uptake,indicating functional thyroid epithelial cells. CONCLUSION: The induced expression of PAX8 and NKX2-1 in hES cells was followed by differentiation into thyroid epithelial cells and their commitment to form functional three-dimensional neo-follicular structures. The data provide proof of principal that hES cells can be committed to thyroid cell speciation under appropriate conditions.
View Publication
Dumitru R et al. (JUN 2012)
Molecular cell 46 5 573--583
Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis.
Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax,which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly,active Bax was maintained at the Golgi rather than at the mitochondria,thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage,active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly,upon differentiation,Bax was no longer active,and cells were not acutely sensitive to DNA damage. Thus,maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death,likely to prevent the propagation of mutations during the early critical stages of embryonic development.
View Publication
Hanna J et al. (MAY 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 20 9222--7
Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs.
Human and mouse embryonic stem cells (ESCs) are derived from blastocyst-stage embryos but have very different biological properties,and molecular analyses suggest that the pluripotent state of human ESCs isolated so far corresponds to that of mouse-derived epiblast stem cells (EpiSCs). Here we rewire the identity of conventional human ESCs into a more immature state that extensively shares defining features with pluripotent mouse ESCs. This was achieved by ectopic induction of Oct4,Klf4,and Klf2 factors combined with LIF and inhibitors of glycogen synthase kinase 3beta (GSK3beta) and mitogen-activated protein kinase (ERK1/2) pathway. Forskolin,a protein kinase A pathway agonist which can induce Klf4 and Klf2 expression,transiently substitutes for the requirement for ectopic transgene expression. In contrast to conventional human ESCs,these epigenetically converted cells have growth properties,an X-chromosome activation state (XaXa),a gene expression profile,and a signaling pathway dependence that are highly similar to those of mouse ESCs. Finally,the same growth conditions allow the derivation of human induced pluripotent stem (iPS) cells with similar properties as mouse iPS cells. The generation of validated naïve" human ESCs will allow the molecular dissection of a previously undefined pluripotent state in humans and may open up new opportunities for patient-specific�
View Publication
Akutsu H et al. (JAN 2006)
Methods in enzymology 418 78--92
Human embryonic stem cells.
Human embryonic stem cells hold great promise in furthering our treatment of disease and increasing our understanding of early development. This chapter describes protocols for the derivation and maintenance of human embryonic stem cells. In addition,it summarizes briefly several alternative methods for the culture of human embryonic stem cells. Thus,this chapter provides a good starting point for researchers interested in harnessing the potential of human embryonic stem cells.
View Publication
Darabi R et al. (MAY 2012)
Cell stem cell 10 5 610--619
Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice.
A major obstacle in the application of cell-based therapies for the treatment of neuromuscular disorders is obtaining the appropriate number of stem/progenitor cells to produce effective engraftment. The use of embryonic stem (ES) or induced pluripotent stem (iPS) cells could overcome this hurdle. However,to date,derivation of engraftable skeletal muscle precursors that can restore muscle function from human pluripotent cells has not been achieved. Here we applied conditional expression of PAX7 in human ES/iPS cells to successfully derive large quantities of myogenic precursors,which,upon transplantation into dystrophic muscle,are able to engraft efficiently,producing abundant human-derived DYSTROPHIN-positive myofibers that exhibit superior strength. Importantly,transplanted cells also seed the muscle satellite cell compartment,and engraftment is present over 11 months posttransplant. This study provides the proof of principle for the derivation of functional skeletal myogenic progenitors from human ES/iPS cells and highlights their potential for future therapeutic application in muscular dystrophies.
View Publication