Blackmore DG et al. (JAN 2012)
PloS one 7 11 e49912
GH mediates exercise-dependent activation of SVZ neural precursor cells in aged mice.
Here we demonstrate,both in vivo and in vitro,that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise,and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast,no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury,we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely,infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation.
View Publication
Poloni A et al. (JAN 2015)
Journal of Molecular Neuroscience 55 1 91--98
Glial-Like Differentiation Potential of Human Mature Adipocytes
The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here,we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes,suggesting that these cells could be committed to the neural lineage. After neural induction,NeuroD1,Sox1,Double Cortin,and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties,indicating the inability of these cells to differentiate into mature neurons. In contrast,the differentiated cells expressed a high level of CLDN11,as demonstrated using molecular method,and stained positively for the glial cell markers CLDN11 and GFAP,as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production,which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion,our data demonstrate morphological,molecular,and immunocytochemical evidence of initial neural differentiation of mature adipocytes,committing to a glial lineage.
View Publication
Kandasamy M et al. (MAR 2017)
Cell and Tissue Research 368 3 531--549
Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs)
Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487(LeX),5750(LeX) and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage,487(LeX)-,5750(LeX)- and 473HD-related glycans were differently expressed. Later,cells of the three germ layers in embryoid bodies (hEBs) and,even after neuralization of hEBs,subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC),LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs(FGF-2/EGF) derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs(FGF-2/EGF). Finally,we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487(LeX),5750(LeX) and 473HD are promising tools for identifying distinct stages during neural differentiation.
View Publication
Chesnokova V et al. (AUG 2013)
Proceedings of the National Academy of Sciences 110 35 E3331--E3339
Growth hormone is a cellular senescence target in pituitary and nonpituitary cells
Premature proliferative arrest in benign or early-stage tumors induced by oncoproteins,chromosomal instability,or DNA damage is associated with p53/p21 activation,culminating in either senescence or apoptosis,depending on cell context. Growth hormone (GH) elicits direct peripheral metabolic actions as well as growth effects mediated by insulin-like growth factor 1 (IGF1). Locally produced peripheral tissue GH,in contrast to circulating pituitary-derived endocrine GH,has been proposed to be both proapoptotic and prooncogenic. Pituitary adenomas expressing and secreting GH are invariably benign and exhibit DNA damage and a senescent phenotype. We therefore tested effects of nutlin-induced p53-mediated senescence in rat and human pituitary cells. We show that DNA damage senescence induced by nutlin triggers the p53/p21 senescent pathway,with subsequent marked induction of intracellular pituitary GH in vitro. In contrast,GH is not induced in cells devoid of p53. Furthermore we show that p53 binds specific GH promoter motifs and enhances GH transcription and secretion in senescent pituitary adenoma cells and also in nonpituitary (human breast and colon) cells. In vivo,treatment with nutlin results in up-regulation of both p53 and GH in the pituitary gland,as well as increased GH expression in nonpituitary tissues (lung and liver). Intracrine GH acts in pituitary cells as an apoptosis switch for p53-mediated senescence,likely protecting the pituitary adenoma from progression to malignancy. Unlike in the pituitary,in nonpituitary cells GH exerts antiapoptotic properties. Thus,the results show that GH is a direct p53 transcriptional target and fulfills criteria as a p53 target gene. Induced GH is a readily measurable cell marker for p53-mediated cellular senescence.
View Publication
Blackmore DG et al. (JAN 2012)
Scientific reports 2 250
Growth hormone responsive neural precursor cells reside within the adult mammalian brain.
The detection of growth hormone (GH) and its receptor in germinal regions of the mammalian brain prompted our investigation of GH and its role in the regulation of endogenous neural precursor cell activity. Here we report that the addition of exogenous GH significantly increased the expansion rate in long-term neurosphere cultures derived from wild-type mice,while neurospheres derived from GH null mice exhibited a reduced expansion rate. We also detected a doubling in the frequency of large (i.e. stem cell-derived) colonies for up to 120 days following a 7-day intracerebroventricular infusion of GH suggesting the activation of endogenous stem cells. Moreover,gamma irradiation induced the ablation of normally quiescent stem cells in GH-infused mice,resulting in a decline in olfactory bulb neurogenesis. These results suggest that GH activates populations of resident stem and progenitor cells,and therefore may represent a novel therapeutic target for age-related neurodegeneration and associated cognitive decline.
View Publication
Booth L et al. (JUL 2015)
Journal of cellular physiology 230 7 1661--76
GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease.
The chaperone GRP78/Dna K is conserved throughout evolution down to prokaryotes. The GRP78 inhibitor OSU-03012 (AR-12) interacted with sildenafil (Viagra) or tadalafil (Cialis) to rapidly reduce GRP78 levels in eukaryotes and as a single agent reduce Dna K levels in prokaryotes. Similar data with the drug combination were obtained for: HSP70,HSP90,GRP94,GRP58,HSP27,HSP40 and HSP60. OSU-03012/sildenafil treatment killed brain cancer stem cells and decreased the expression of: NPC1 and TIM1; LAMP1; and NTCP1,receptors for Ebola/Marburg/Hepatitis A,Lassa fever,and Hepatitis B viruses,respectively. Pre-treatment with OSU-03012/sildenafil reduced expression of the coxsakie and adenovirus receptor in parallel with it also reducing the ability of a serotype 5 adenovirus or coxsakie virus B4 to infect and to reproduce. Similar data were obtained using Chikungunya,Mumps,Measles,Rubella,RSV,CMV,and Influenza viruses. OSU-03012 as a single agent at clinically relevant concentrations killed laboratory generated antibiotic resistant E. coli and clinical isolate multi-drug resistant N. gonorrhoeae and MRSE which was in bacteria associated with reduced Dna K and Rec A expression. The PDE5 inhibitors sildenafil or tadalafil enhanced OSU-03012 killing in N. gonorrhoeae and MRSE and low marginally toxic doses of OSU-03012 could restore bacterial sensitivity in N. gonorrhoeae to multiple antibiotics. Thus,Dna K and bacterial phosphodiesterases are novel antibiotic targets,and inhibition of GRP78 is of therapeutic utility for cancer and also for bacterial and viral infections.
View Publication
Mattis VB et al. (JUN 2014)
Human Molecular Genetics 24 11 3257--3271
HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity
Huntington's disease (HD) is a fatal neurodegenerative disease,caused by expansion of polyglutamine repeats in the Huntingtin gene,with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however,the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines,which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity,as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed,blocking glutamate signaling,not just through the NMDA but also mGlu and AMPA/Kainate receptors,completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together,these results provide important insight into HD mechanisms at early developmental time points,which may suggest novel approaches to HD therapeutics.
View Publication
Pei Y et al. (MAR 2016)
Cancer cell 29 3 311--23
HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma.
Medulloblastoma (MB) is a highly malignant pediatric brain tumor. Despite aggressive therapy,many patients succumb to the disease,and survivors experience severe side effects from treatment. MYC-driven MB has a particularly poor prognosis and would greatly benefit from more effective therapies. We used an animal model of MYC-driven MB to screen for drugs that decrease viability of tumor cells. Among the most effective compounds were histone deacetylase inhibitors (HDACIs). HDACIs potently inhibit survival of MYC-driven MB cells in vitro,in part by inducing expression of the FOXO1 tumor suppressor gene. HDACIs also synergize with phosphatidylinositol 3-kinase inhibitors to inhibit tumor growth in vivo. These studies identify an effective combination therapy for the most aggressive form of MB.
View Publication
Foti SB et al. (OCT 2013)
International Journal of Developmental Neuroscience 31 6 434--447
HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain
The mammalian central nervous system (CNS) undergoes significant expansion postnatally,producing astrocytes,oligodendrocytes and inhibitory neurons to modulate the activity of neural circuits. This is coincident in humans with the emergence of pediatric epilepsy,a condition commonly treated with valproate/valproic acid (VPA),a potent inhibitor of histone deacetylases (HDACs). The sequential activity of specific HDACs,however,may be essential for the differentiation of distinct subpopulations of neurons and glia. Here,we show that different subsets of CNS neural stem cells (NSCs) and progenitors switch expression of HDAC1 and HDAC2 as they commit to a neurogenic lineage in the subventricular zone (SVZ) and dentate gyrus (DG). The administration of VPA for only one week from P7-P14,combined with sequential injections of thymidine analogs reveals that VPA stimulates a significant and differential decrease in the production and differentiation of progeny of NSCs in the DG,rostral migratory stream (RMS),and olfactory bulb (OB). Cross-fostering VPA-treated mice revealed,however,that a postnatal failure to thrive induced by VPA treatment had a greater effect on DG neurogenesis than VPA action directly. By one month after VPA,OB interneuron genesis was significantly and differentially reduced in both periglomerular and granule neurons. Using neurosphere assays to test if VPA directly regulates NSC activity,we found that short term treatment with VPA in vivo reduced neurosphere numbers and size,a phenotype that was also obtained in neurospheres from control mice treated with VPA and an alternative HDAC inhibitor,Trichostatin A (TSA) at 0 and 3 days in vitro (DIV). Collectively,these data show that clinically used HDAC inhibitors like VPA and TSA can perturb postnatal neurogenesis; and their use should be carefully considered,especially in individuals whose brains are actively undergoing key postnatal time windows of development.
View Publication
Rosa AI et al. (DEC 2016)
Frontiers in cellular neuroscience 10 284
Heterocellular Contacts with Mouse Brain Endothelial Cells Via Laminin and α6β1 Integrin Sustain Subventricular Zone (SVZ) Stem/Progenitor Cells Properties.
Neurogenesis in the subventricular zone (SVZ) is regulated by diffusible factors and cell-cell contacts. In vivo,SVZ stem cells are associated with the abluminal surface of blood vessels and such interactions are thought to regulate their neurogenic capacity. SVZ neural stem cells (NSCs) have been described to contact endothelial-derived laminin via α6β1 integrin. To elucidate whether heterocellular contacts with brain endothelial cells (BEC) regulate SVZ cells neurogenic capacities,cocultures of SVZ neurospheres and primary BEC,both obtained from C57BL/6 mice,were performed. The involvement of laminin-integrin interactions in SVZ homeostasis was tested in three ways. Firstly,SVZ cells were analyzed following incubation of BEC with the protein synthesis inhibitor cycloheximide (CHX) prior to coculture,a treatment expected to decrease membrane proteins. Secondly,SVZ cells were cocultured with BEC in the presence of an anti-α6 integrin neutralizing antibody. Thirdly,BEC were cultured with β1-/- SVZ cells. We showed that contact with BEC supports,at least in part,proliferation and stemness of SVZ cells,as evaluated by the number of BrdU positive (+) and Sox2+ cells in contact with BEC. These effects are dependent on BEC-derived laminin binding to α6β1 integrin and are decreased in cocultures incubated with anti-α6 integrin neutralizing antibody and in cocultures with SVZ β1-/- cells. Moreover,BEC-derived laminin sustains stemness in SVZ cell cultures via activation of the Notch and mTOR signaling pathways. Our results show that BEC/SVZ interactions involving α6β1 integrin binding to laminin,contribute to SVZ cell proliferation and stemness.
View Publication
Binder LI et al. (SEP 1984)
Proceedings of the National Academy of Sciences of the United States of America 81 17 5613--7
Heterogeneity of microtubule-associated protein 2 during rat brain development.
The electrophoretic pattern of the large microtubule-associated protein,MAP2,changes during rat brain development. Immunoblots of NaDodSO4 extracts obtained from the cerebral cortex,cerebellum,and thalamus at 10-15 days after birth reveal only a single electrophoretic species when probed with any of three MAP2 monoclonal antibodies. By contrast,adult MAP2 contains two immunoreactive species,MAP2a and MAP2b. The single band of MAP2 from immature brain electrophoretically comigrates with adult MAP2b. Between postnatal days 17 and 18,immature MAP2 simultaneously resolves into two species in both the cerebellum and cerebral cortex. Immunoblots of NaDodSO4 extracts from spinal cord demonstrate the adult complement of MAP2 by day 10,indicating that MAP2 does not change coordinately throughout the entire central nervous system. In vitro cAMP-dependent phosphorylation of immature MAP2 causes a band split reminiscent of that seen during brain development in vivo. The possibility that the developmentally regulated changes observed in MAP2 during brain maturation are due to timed phosphorylation events is discussed.
View Publication