S100-alarmin-induced innate immune programming protects newborn infants from sepsis.
The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however,the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic,epigenetic and immunological approaches,we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide,but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates,shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective,transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.
View Publication
Merino A et al. (FEB 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 3 1809--15
Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity.
In elderly subjects and in patients with chronic inflammatory diseases,there is an increased subset of monocytes with a CD14(+)CD16(+) phenotype,whose origin and functional relevance has not been well characterized. In this study,we determined whether prolonged survival of human CD14(++)CD16(-) monocytes promotes the emergence of senescent cells,and we analyzed their molecular phenotypic and functional characteristics. We used an in vitro model to prolong the life span of healthy monocytes. We determined cell senescence,intracellular cytokine expression,ability to interact with endothelial cells,and APC activity. CD14(+)CD16(+) monocytes were senescent cells with shortened telomeres (215 ± 37 relative telomere length) versus CD14(++)CD16(-) cells (339 ± 44 relative telomere length; p textless 0.05) and increased expression of β-galactosidase (86.4 ± 16.4% versus 10.3 ± 7.5%,respectively; p = 0.002). CD14(+)CD16(+) monocytes exhibited features of activated cells that included expression of CD209,release of cytokines in response to low-intensity stimulus,and increased capacity to sustain lymphocyte proliferation. Finally,compared with CD14(++)CD16(-) cells,CD14(+)CD16(+) monocytes showed elevated expression of chemokine receptors and increased adhesion to endothelial cells (19.6 ± 8.1% versus 5.3 ± 4.1%; p = 0.033). In summary,our data indicated that the senescent CD14(+)CD16(+) monocytes are activated cells,with increased inflammatory activity and ability to interact with endothelial cells. Therefore,accumulation of senescent monocytes may explain,in part,the development of chronic inflammation and atherosclerosis in elderly subjects and in patients with chronic inflammatory diseases.
View Publication
Capucha T et al. (JAN 2018)
The Journal of experimental medicine
Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation.
Mucosal Langerhans cells (LCs) originate from pre-dendritic cells and monocytes. However,the mechanisms involved in their in situ development remain unclear. Here,we demonstrate that the differentiation of murine mucosal LCs is a two-step process. In the lamina propria,signaling via BMP7-ALK3 promotes translocation of LC precursors to the epithelium. Within the epithelium,TGF-β1 finalizes LC differentiation,and ALK5 is crucial to this process. Moreover,the local microbiota has a major impact on the development of mucosal LCs,whereas LCs in turn maintain mucosal homeostasis and prevent tissue destruction. These results reveal the differential and sequential role of TGF-β1 and BMP7 in LC differentiation and highlight the intimate interplay of LCs with the microbiota.
View Publication
Gonzalez-Velasquez FJ and Moss MA (JAN 2008)
Journal of neurochemistry 104 2 500--13
Soluble aggregates of the amyloid-beta protein activate endothelial monolayers for adhesion and subsequent transmigration of monocyte cells.
Increasing evidence suggests that the deposition of amyloid plaques,composed primarily of the amyloid-beta protein (Abeta),within the cerebrovasculature is a frequent occurrence in Alzheimer's disease and may play a significant role in disease progression. Accordingly,the pathogenic mechanisms by which Abeta can alter vascular function may have therapeutic implications. Despite observations that Abeta elicits a number of physiological responses in endothelial cells,ranging from alteration of protein expression to cell death,the Abeta species accountable for these responses remains unexplored. In the current study,we show that isolated soluble Abeta aggregation intermediates activate human brain microvascular endothelial cells for both adhesion and subsequent transmigration of monocyte cells in the absence of endothelial cell death and monolayer disruption. In contrast,unaggregated Abeta monomer and mature Abeta fibril fail to induce any change in endothelial adhesion or transmigration. Correlations between average Abeta aggregate size and observed increases in adhesion illustrate that smaller soluble aggregates are more potent activators of endothelium. These results support previous studies demonstrating heightened neuronal activity of soluble Abeta aggregates,including Abeta-derived diffusible ligands,oligomers,and protofibrils,and further show that soluble aggregates also selectively exhibit activity in a vascular cell model.
View Publication
Lambert AA et al. (AUG 2008)
Blood 112 4 1299--307
The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways.
The dynamic interplay between dendritic cells (DCs) and human immunodeficiency virus type-1 (HIV-1) is thought to result in viral dissemination and evasion of antiviral immunity. Although initial observations suggested that the C-type lectin receptor (CLR) DC-SIGN was responsible for the trans-infection function of the virus,subsequent studies demonstrated that trans-infection of CD4(+) T cells with HIV-1 can also occur through DC-SIGN-independent mechanisms. We demonstrate that a cell surface molecule designated DCIR (for DC immunoreceptor),a member of a recently described family of DC-expressing CLRs,can participate in the capture of HIV-1 and promote infection in trans and in cis of autologous CD4(+) T cells from human immature monocyte-derived DCs. The contribution of DCIR to these processes was revealed using DCIR-specific siRNAs and a polyclonal antibody specific for the carbohydrate recognition domain of DCIR. Data from transfection experiments indicated that DCIR acts as a ligand for HIV-1 and is involved in events leading to productive virus infection. Finally,we show that the neck domain of DCIR is important for the DCIR-mediated effect on virus binding and infection. These results point to a possible role for DCIR in HIV-1 pathogenesis by supporting the productive infection of DCs and promoting virus propagation.
View Publication
Shirai T et al. (MAR 2016)
The Journal of Experimental Medicine 213 3 337--54
The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease.
Abnormal glucose metabolism and enhanced oxidative stress accelerate cardiovascular disease,a chronic inflammatory condition causing high morbidity and mortality. Here,we report that in monocytes and macrophages of patients with atherosclerotic coronary artery disease (CAD),overutilization of glucose promotes excessive and prolonged production of the cytokines IL-6 and IL-1β,driving systemic and tissue inflammation. In patient-derived monocytes and macrophages,increased glucose uptake and glycolytic flux fuel the generation of mitochondrial reactive oxygen species,which in turn promote dimerization of the glycolytic enzyme pyruvate kinase M2 (PKM2) and enable its nuclear translocation. Nuclear PKM2 functions as a protein kinase that phosphorylates the transcription factor STAT3,thus boosting IL-6 and IL-1β production. Reducing glycolysis,scavenging superoxide and enforcing PKM2 tetramerization correct the proinflammatory phenotype of CAD macrophages. In essence,PKM2 serves a previously unidentified role as a molecular integrator of metabolic dysfunction,oxidative stress and tissue inflammation and represents a novel therapeutic target in cardiovascular disease.
View Publication
Shreffler WG et al. (SEP 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 6 3677--85
The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro.
Nonmammalian glycan structures from helminths act as Th2 adjuvants. Some of these structures are also common on plant glycoproteins. We hypothesized that glycan structures present on peanut glycoallergens act as Th2 adjuvants. Peanut Ag (PNAg),but not deglycosylated PNAg,activated monocyte-derived dendritic cells (MDDCs) as measured by MHC/costimulatory molecule up-regulation,and by their ability to drive T cell proliferation. Furthermore,PNAg-activated MDDCs induced 2- to 3-fold more IL-4- and IL-13-secreting Th2 cells than immature or TNF/IL-1-activated MDDCs when cultured with naive CD4+ T cells. Human MDDCs rapidly internalized Ag in a calcium- and glycan-dependent manner consistent with recognition by C-type lectin. Dendritic cell (DC)-specific ICAM-grabbing nonintegrin (DC-SIGN) (CD209) was shown to recognize PNAg by enhanced uptake in transfected cell lines. To identify the DC-SIGN ligand from unfractionated PNAg,we expressed the extracellular portion of DC-SIGN as an Fc-fusion protein and used it to immunoprecipitate PNAg. A single glycoprotein was pulled down in a calcium-dependent manner,and its identity as Ara h 1 was proven by immunolabeling and mass spectrometry. Purified Ara h 1 was found to be sufficient for the induction of MDDCs that prime Th2-skewed T cell responses. Both PNAg and purified Ara h 1 induced Erk 1/2 phosphorylation of MDDCs,consistent with previous reports on the effect of Th2 adjuvants on DCs.
View Publication
Pourcet B et al. (MAY 2016)
Scientific Reports 6 25481
The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms.
IL-18 is a member of the IL-1 family involved in innate immunity and inflammation. Deregulated levels of IL-18 are involved in the pathogenesis of multiple disorders including inflammatory and metabolic diseases,yet relatively little is known regarding its regulation. Liver X receptors or LXRs are key modulators of macrophage cholesterol homeostasis and immune responses. Here we show that LXR ligands negatively regulate LPS-induced mRNA and protein expression of IL-18 in bone marrow-derived macrophages. Consistent with this being an LXR-mediated process,inhibition is abolished in the presence of a specific LXR antagonist and in LXR-deficient macrophages. Additionally,IL-18 processing of its precursor inactive form to its bioactive state is inhibited by LXR through negative regulation of both pro-caspase 1 expression and activation. Finally,LXR ligands further modulate IL-18 levels by inducing the expression of IL-18BP,a potent endogenous inhibitor of IL-18. This regulation occurs via the transcription factor IRF8,thus identifying IL-18BP as a novel LXR and IRF8 target gene. In conclusion,LXR activation inhibits IL-18 production through regulation of its transcription and maturation into an active pro-inflammatory cytokine. This novel regulation of IL-18 by LXR could be applied to modulate the severity of IL-18 driven metabolic and inflammatory disorders.
View Publication