Sustained exposure to nicotine leads to extramedullary hematopoiesis in the spleen.
The effect of sustained exposure to nicotine,a major constituent of cigarette smoke,on hematopoiesis in the bone marrow (BM) and spleen was evaluated in a murine model. BALB/c mice were exposed to nicotine subcutaneously using 21-day slow-release pellets. Exposure to nicotine had no effect on the proliferation of long-term BM cultures or on their ability to form colonies. However,there was a significant decrease in the generation of lineage-specific progenitor cells,specifically eosinophil (colony-forming unit [CFU]-Eos) progenitors,in the BM of nicotine-exposed mice compared with control mice. Surprisingly,sustained exposure of mice to nicotine was found to induce significant hematopoiesis in the spleen. There was a significant increase in total colony formation as well as eosinophil-,granulocyte-macrophage-,and B-lymphocyte-specific progenitors (CFU-Eos,CFU-GM,and CFU-B,respectively) in nicotine-exposed mice but not in control mice. Sustained exposure to nicotine was associated with significant inhibition of rolling and migration of enriched hematopoietic stem/progenitor cells (HSPCs) across BM endothelial cells (BMECs) in vitro as well as decreased expression of beta2 integrin on the surface of these cells. Although sustained exposure to nicotine has only a modest effect on BM hematopoiesis,our studies indicate that it significantly induces extramedullary hematopoiesis in the spleen. Decreased interaction of nicotine-exposed HSPCs with BMECs (i.e.,rolling and migration) may result in altered BM homing of these cells,leading to their seeding and proliferation at extramedullary sites such as the spleen.
View Publication
Goel A et al. (MAY 2006)
Blood 107 10 4063--70
Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma.
Multiple myeloma is a highly radiosensitive skeletal malignancy,but bone-seeking radionuclides have not yet found their place in disease management. We previously reported that the proteasome inhibitor PS-341 selectively sensitizes myeloma cells to the lethal effects of ionizing radiation. To extend these observations to an in vivo model,we combined PS-341 with the bone-seeking radionuclide 153-Sm-EDTMP. In vitro clonogenic assays demonstrated synergistic killing of myeloma cells exposed to both PS-341 and 153-Sm-EDTMP. Using the orthotopic,syngeneic 5TGM1 myeloma model,the median survivals of mice treated with saline,2 doses of PS-341 (0.5 mg/kg),or a single nonmyeloablative dose of 153-Sm-EDTMP (22.5 MBq) were 21,22,and 28 days,respectively. In contrast,mice treated with combination therapy comprising 2 doses of PS-341 (0.5 mg/kg),1 day prior to and 1 day following 153-Sm-EDTMP (22.5 MBq) showed a significantly prolonged median survival of 49 days (P textless .001). In addition to prolonged survival,this treatment combination yielded reduced clonogenicity of bone marrow-resident 5TGM1 cells,reduced serum myeloma-associated paraprotein levels,and better preservation of bone mineral density. Myelosuppression,determined by peripheral blood cell counts and clonogenicity assays of hematopoietic progenitors,did not differ between animals treated with 153-Sm-EDTMP alone versus those treated with the combination of PS-341 plus 153-Sm-EDTMP. PS-341 is a potent,selective in vivo radiosensitizer that may substantially affect the efficacy of skeletal-targeted radiotherapy in multiple myeloma.
View Publication
Casazza A et al. (APR 2011)
Arteriosclerosis,thrombosis,and vascular biology 31 4 741--9
Systemic and targeted delivery of semaphorin 3A inhibits tumor angiogenesis and progression in mouse tumor models.
OBJECTIVE: The role of semaphorins in tumor progression is still poorly understood. In this study,we aimed at elucidating the regulatory role of semaphorin 3A (SEMA3A) in primary tumor growth and metastatic dissemination. METHODS AND RESULTS: We used 3 different experimental approaches in mouse tumor models: (1) overexpression of SEMA3A in tumor cells,(2) systemic expression of SEMA3A following liver gene transfer in mice,and (3) tumor-targeted release of SEMA3A using gene modified Tie2-expressing monocytes as delivery vehicles. In each of these experimental settings,SEMA3A efficiently inhibited tumor growth by inhibiting vessel function and increasing tumor hypoxia and necrosis,without promoting metastasis. We further show that the expression of the receptor neuropilin-1 in tumor cells is required for SEMA3A-dependent inhibition of tumor cell migration in vitro and metastatic spreading in vivo. CONCLUSIONS: In sum,both systemic and tumor-targeted delivery of SEMA3A inhibits tumor angiogenesis and tumor growth in multiple mouse models; moreover,SEMA3A inhibits the metastatic spreading from primary tumors. These data support the rationale for further investigation of SEMA3A as an anticancer molecule.
View Publication
Esensten JH et al. (JUL 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 1 75--82
T-bet-deficient NOD mice are protected from diabetes due to defects in both T cell and innate immune system function.
The transcription factor T-bet (Tbx21) is critical for Th1 polarization of CD4(+) T cells. Genetic deletion of Tbx21 can cause either exacerbation or attenuation of different autoimmune diseases in animal models. In the nonobese diabetic (NOD) mouse,genetic deletion of the Ifng or the Il12b (IL-12p40) genes,which are both critical Th1 cytokines,does not reduce the incidence of autoimmune diabetes. These results suggest that autoimmune diabetes in the NOD may not be a Th1-driven disease. However,we report that Tbx21 deficiency in the NOD mouse completely blocks insulitis and diabetes due to defects both in the initiation of the anti-islet immune response and in the function of CD4(+) effector T cells. We find defective priming of naive islet-reactive T cells by the innate immune system in Tbx21(-/-) animals. By contrast to naive cells,activated islet-reactive BDC2.5 TCR-transgenic T cells do not require Tbx21 in recipient animals for efficient adoptive transfer of diabetes. However,when these BDC2.5 TCR-transgenic effector cells lack Tbx21,they are less effective at entering the pancreas and promoting diabetes than Tbx21(+/+) cells. Tbx21(-/-) regulatory T cells function normally in vitro and diabetes can be restored in Tbx21(-/-) mice by reducing regulatory T cell numbers. Thus,the absence of diabetes in the NOD.Tbx21(-/-) is due to intrinsic defects in both T cells and cells of the innate immune system paired with the relative preservation of regulatory T cell function.
View Publication
Kurita R et al. (SEP 2006)
Stem cells (Dayton,Ohio) 24 9 2014--22
Tal1/Scl gene transduction using a lentiviral vector stimulates highly efficient hematopoietic cell differentiation from common marmoset (Callithrix jacchus) embryonic stem cells.
The development of embryonic stem cell (ESC) therapies requires the establishment of efficient methods to differentiate ESCs into specific cell lineages. Here,we report the in vitro differentiation of common marmoset (CM) (Callithrix jacchus) ESCs into hematopoietic cells after exogenous gene transfer using vesicular stomatitis virus-glycoprotein-pseudotyped lentiviral vectors. We transduced hematopoietic genes,including tal1/scl,gata1,gata2,hoxB4,and lhx2,into CM ESCs. By immunochemical and morphological analyses,we demonstrated that overexpression of tal1/scl,but not the remaining genes,dramatically increased hematopoiesis of CM ESCs,resulting in multiple blood-cell lineages. Furthermore,flow cytometric analysis demonstrated that CD34,a hematopoietic stem/progenitor cell marker,was highly expressed in tal1/scl-overexpressing embryoid body cells. Similar results were obtained from three independent CM ESC lines. These results suggest that transduction of exogenous tal1/scl cDNA into ESCs is a promising method to induce the efficient differentiation of CM ESCs into hematopoietic stem/progenitor cells.
View Publication
Wong JCY et al. (AUG 2003)
Human molecular genetics 12 16 2063--76
Targeted disruption of exons 1 to 6 of the Fanconi Anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia.
Fanconi Anemia (FA) is an autosomal recessive disorder characterized by cellular hypersensitivity to DNA cross-linking agents. Recent studies suggest that FA proteins share a common pathway with BRCA proteins. To study the in vivo role of the FA group A gene (Fanca),gene-targeting techniques were used to generate Fanca(tm1Hsc) mice in which Fanca exons 1-6 were replaced by a beta-galactosidase reporter construct. Fanca(tm1.1Hsc) mice were generated by Cre-mediated removal of the neomycin cassette in Fanca(tm1Hsc) mice. Fanca(tm1.1Hsc) homozygotes display FA-like phenotypes including growth retardation,microphthalmia and craniofacial malformations that are not found in other Fanca mouse models,and the genetic background affects manifestation of certain phenotypes. Both male and female mice homozygous for Fanca mutation exhibit hypogonadism,and homozygous females demonstrate premature reproductive senescence and an increased incidence of ovarian cysts. We showed that fertility defects in Fanca(tm1.1Hsc) homozygotes might be related to a diminished population of primordial germ cells (PGCs) during migration into the gonadal ridges. We also found a high level of Fanca expression in pachytene spermatocytes. Fanca(tm1Hsc) homozygous males exhibited an elevated frequency of mispaired meiotic chromosomes and increased apoptosis in germ cells,implicating a role for Fanca in meiotic recombination. However,the localization of Rad51,Brca1,Fancd2 and Mlh1 appeared normal on Fanca(tm1Hsc) homozygous meiotic chromosomes. Taken together,our results suggest that the FA pathway plays a role in the maintenance of reproductive germ cells and in meiotic recombination.
View Publication
Kimura Y et al. (APR 2004)
Proceedings of the National Academy of Sciences of the United States of America 101 16 6015--20
Targeted mutations of the juxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affect multiple cell lineages.
Loss-of-function mutations in the murine dominant white spotting/c-kit locus affect a diverse array of biological processes and cell lineages and cause a range of phenotypes,including severe anemia,defective pigmentation,sterility,mast cell deficits,a lack of interstitial cells of Cajal,spatial learning memory deficits,and defects in peripheral nerve regeneration. Here we show that tyrosine residues 567 and 569 in the juxtamembrane (Jx) domain of the murine Kit receptor tyrosine kinase are crucial for the function of Kit in melanogenesis and mast cell development,but are dispensable for the normal development of erythroid,interstitial cells of Cajal and germ cells. Furthermore,adult mice lacking both tyrosines exhibit splenomegaly,dysregulation of B-cell and megakaryocyte development,and enlarged stomachs. Analysis of signal transduction events induced by the mutant receptors after ligand stimulation indicates that Jx tyrosine mutations diminish receptor autophosphorylation and selectively attenuate activation of extracellular signal-regulated kinase/mitogen-activated protein kinases. Together,these observations demonstrate that the Jx domain of Kit plays a cell-type specific regulatory role in vivo and illustrate how engineered mutations in Kit can be used to understand the complex biological and molecular events that result from activating a receptor tyrosine kinase.
View Publication
Bishop MR et al. (SEP 2004)
British journal of haematology 126 6 837--43
Mixed chimaerism and graft rejection are higher after reduced-intensity allogeneic stem cell transplantation (RIST) with T-cell depleted (TCD) allografts. As host immune status before RIST affects engraftment,we hypothesized that targeted depletion of host lymphocytes prior to RIST would abrogate graft rejection and promote donor chimaerism. Lymphocyte-depleting chemotherapy was administered at conventional doses to subjects prior to RIST with the intent of decreasing CD4(+) counts to textless0.05 x 10(9)cells/l. Subjects (n = 18) then received reduced-intensity conditioning followed by ex vivo TCD human leucocyte antigen-matched sibling allografts. All evaluable patients (n = 17) were engrafted; there were no late graft failures. At day +28 post-RIST,12 patients showed complete donor chimaerism. Mixed chimaerism in the remaining five patients was associated with higher numbers of circulating host CD3(+) cells (P = 0.0032) after lymphocyte-depleting chemotherapy and was preferentially observed in T lymphoid rather than myeloid cells. Full donor chimaerism was achieved in all patients after planned donor lymphocyte infusions. These data reflect the importance of host immune status prior to RIST and suggest that targeted host lymphocyte depletion facilitates the engraftment of TCD allografts. Targeted lymphocyte depletion may permit an individualized approach to conditioning based on host immune status prior to RIST.
View Publication
Chandrashekran A et al. (NOV 2004)
Blood 104 9 2697--703
Targeted retroviral transduction of c-kit+ hematopoietic cells using novel ligand display technology.
Gene therapy for a wide variety of disorders would be greatly enhanced by the development of vectors that could be targeted for gene delivery to specific populations of cells. We describe here high-efficiency targeted transduction based on a novel targeting strategy that exploits the ability of retroviruses to incorporate host cell proteins into the surface of the viral particle as they bud through the plasma membrane. Ecotropic retroviral particles produced in cells engineered to express the membrane-bound form of stem cell factor (mbSCF) transduce both human cell lines and primary cells with high efficiency in a strictly c-kit (SCF receptor)-dependent fashion. The availability of efficient targeted vectors provides a platform for the development of a new generation of therapies using in vivo gene delivery.
View Publication
Liang M et al. (MAR 2009)
The journal of gene medicine 11 3 185--96
Targeted transduction of CD34+ hematopoietic progenitor cells in nonpurified human mobilized peripheral blood mononuclear cells.
BACKGROUND: Conventional gene-therapy applications of hematopoietic stem cells (HSCs) involve purification of CD34+ progenitor cells from the mobilized peripheral blood,ex vivo transduction of the gene of interest into them,and reinfusion of the transduced CD34+ progenitor cells into patients. Eliminating the process of purification would save labor,time and money,while enhancing HSCs viability,transplantability and pluripotency. Lentiviral vectors have been widely used in gene therapy because they infect both dividing and nondividing cells and provide sustained transgene expression. One of the exceptions to this rule is quiescent primary lymphocytes,in which reverse transcription of viral DNA is not completed. METHODS: In the present study,we tested the possibility of targeting CD34+ progenitor cells within nonpurified human mobilized peripheral blood mononuclear cells (mPBMCs) utilizing vesicular stomatitis virus G (VSV-G) pseudotyped lentiviral vectors,based on the assumption that the CD34+ progenitor cells would be preferentially transduced. To further enhance the specificity of vector transduction,we also examined utilizing a modified Sindbis virus envelope (2.2) pseudotyped lentiviral vector,developed in our laboratory,that allows targeted transduction to specific cell receptors via antibody recognition. RESULTS: Both the VSV-G and 2.2 pseudotyped vectors achieved measurable results when they were used to target CD34+ progenitor cells in nonpurified mPBMCs. CONCLUSIONS: Overall,the data obtained demonstrate the potential of ex vivo targeting of CD34+ progenitor cells without purification.
View Publication
Pei S et al. (NOV 2013)
The Journal of biological chemistry 288 47 33542--58
Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells.
The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular,primitive leukemia cells,often termed leukemia stem cells,are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins,presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation,CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise,we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly,these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism,which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1),as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism,an intrinsic property of primary human AML cells.
View Publication