Romieu-Mourez R et al. (JUN 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 12 7963--73
Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype.
Bone marrow-derived mesenchymal stromal cells (MSC) possess an immune plasticity manifested by either an immunosuppressive or,when activated with IFN-gamma,an APC phenotype. Herein,TLR expression by MSC and their immune regulatory role were investigated. We observed that human MSC and macrophages expressed TLR3 and TLR4 at comparable levels and TLR-mediated activation of MSC resulted in the production of inflammatory mediators such as IL-1beta,IL-6,IL-8/CXCL8,and CCL5. IFN-alpha or IFN-gamma priming up-regulated production of these inflammatory mediators and expression of IFNB,inducible NO synthase (iNOS),and TRAIL upon TLR activation in MSC and macrophages,but failed to induce IL-12 and TNF-alpha production in MSC. Nonetheless,TLR activation in MSC resulted in the formation of an inflammatory site attracting innate immune cells,as evaluated by human neutrophil chemotaxis assays and by the analysis of immune effectors retrieved from Matrigel-embedded MSC injected into mice after in vitro preactivation with cytokines and/or TLR ligands. Hence,TLR-activated MSC are capable of recruiting immune inflammatory cells. In addition,IFN priming combined with TLR activation may increase immune responses induced by Ag-presenting MSC through presentation of Ag in an inflammatory context,a mechanism that could be applied in a cell-based vaccine.
View Publication
Grajales L et al. (APR 2010)
Journal of molecular and cellular cardiology 48 4 735--45
Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) can be induced to differentiate into myogenic cells. Despite their potential,previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage,culture milieu,and enrichment for specific cell subtypes before and during differentiation. Our study demonstrated that Lin(-) BM-MSC at an intermediate passage (IP; P8-P12) expressed cardiac troponin T (cTnT) after 21 days in culture. Cardiac TnT expression was similar whether IP cells were differentiated in media containing 5-azacytidine+2% FBS (AZA; 14%) or 2% FBS alone (LS; 12%) and both were significantly higher than AZA+5% FBS. This expression was potentiated by first enriching for CD117/Sca-1 cells followed by differentiation (AZA,39% and LS,28%). A second sequential enrichment for the dihydropyridine receptor subunit alpha2delta1 (DHPR-alpha2) resulted in cardiac TnT expressed in 54% of cultured cells compared to 28% of cells after CD117/Sca-1(+) enrichment. Cells enriched for CD117/Sca-1 and subjected to differentiation displayed spontaneous intracellular Ca(2+) transients with an increase in transient frequency and a 60% decrease in the transient duration amplitude between days 14 and 29. In conclusion,IP CD117/Sca-1(+) murine BM-MSCs display robust cardiac muscle lineage development that can be induced independent of AZA but is diminished under higher serum concentrations. Furthermore,temporal changes in calcium kinetics commensurate with increased cTnT expression suggest progressive maturation of a cardiac muscle lineage. Enrichment with CD117/Sca-1 to establish lineage commitment followed by DHPR-alpha2 in lineage developing cells may enhance the therapeutic potential of these cells for transplantation.
View Publication
Fukuta M et al. (DEC 2014)
PLoS ONE 9 12 e112291
Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media
Neural crest cells (NCCs) are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton,cornea,peripheral nervous system,and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs) from human pluripotent stem cells (hPSCs),such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs),further modifications are required to improve the robustness,efficacy,and simplicity of these methods. Chemically defined medium (CDM) was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions,the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin) very efficiently induced hNCCs (70-80%) from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons,glia,melanocytes,and corneal endothelial cells. In addition,cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs) were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.
View Publication
Vaysse L et al. (FEB 2004)
The Journal of biological chemistry 279 7 5555--64
Development of a self-assembling nuclear targeting vector system based on the tetracycline repressor protein.
The ultimate destination for most gene therapy vectors is the nucleus and nuclear import of potentially therapeutic DNA is one of the major barriers for nonviral vectors. We have developed a novel approach of attaching a nuclear localization sequence (NLS) peptide to DNA in a non-essential position,by generating a fusion between the tetracycline repressor protein TetR and the SV40-derived NLS peptide. The high affinity and specificity of TetR for the short DNA sequence tetO was used in these studies to bind the NLS to DNA as demonstrated by the reduced electrophoretic mobility of the TetR.tetO-DNA complexes. The protein TetR-NLS,but not control protein TetR,specifically enhances gene expression from lipofected tetO-containing DNA between 4- and 16-fold. The specific enhancement is observed in a variety of cell types,including primary and growth-arrested cells. Intracellular trafficking studies demonstrate an increased accumulation of fluorescence labeled DNA in the nucleus after TetR-NLS binding. In comparison,binding studies using the similar fusion of peptide nucleic acid (PNA) with NLS peptide,demonstrate specific binding of PNA to plasmid DNA. However,although we observed a 2-8.5-fold increase in plasmid-mediated luciferase activity with bis-PNA-NLS,control bis-PNA without an NLS sequence gave a similar increase,suggesting that the effect may not be because of a specific bis-PNA-NLS-mediated enhancement of nuclear transfer of the plasmid. Overall,we found TetRNLS-enhanced plasmid-mediated transgene expression at a similar level to that by bis-PNA-NLS or bis-PNA alone but specific to nuclear uptake and significantly more reliable and reproducible.
View Publication
Dani C et al. (JUN 1997)
Journal of cell science 110 ( Pt 1 1279--85
Differentiation of embryonic stem cells into adipocytes in vitro.
Embryonic stem cells,derived from the inner cell mass of murine blastocysts,can be maintained in a totipotent state in vitro. In appropriate conditions embryonic stem cells have been shown to differentiate in vitro into various derivatives of all three primary germ layers. We describe in this paper conditions to induce differentiation of embryonic stem cells reliably and at high efficiency into adipocytes. A prerequisite is to treat early developing embryonic stem cell-derived embryoid bodies with retinoic acid for a precise period of time. Retinoic acid could not be substituted by adipogenic hormones nor by potent activators of peroxisome proliferator-activated receptors. Treatment with retinoic acid resulted in the subsequent appearance of large clusters of mature adipocytes in embryoid body outgrowths. Lipogenic and lipolytic activities as well as high level expression of adipocyte specific genes could be detected in these cultures. Analysis of expression of potential adipogenic genes,such as peroxisome proliferator-activated receptors gamma and delta and CCAAT/enhancer binding protein beta,during differentiation of retinoic acid-treated embryoid bodies has been performed. The temporal pattern of expression of genes encoding these nuclear factors resembled that found during mouse embryogenesis. The differentiation of embryonic stem cells into adipocytes will provide an invaluable model for the characterisation of the role of genes expressed during the adipocyte development programme and for the identification of new adipogenic regulatory genes.
View Publication
Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells.
Pluripotent embryonic stem (ES) cells have the potential to differentiate to all fetal and adult cell types and might represent a useful cell source for tissue engineering and repair. Here we show that differentiation of ES cells toward the osteoblast lineage can be enhanced by supplementing serum-containing media with ascorbic acid,beta-glycerophosphate,and/or dexamethasone/retinoic acid or by co-culture with fetal murine osteoblasts. ES cell differentiation into osteoblasts was characterized by the formation of discrete mineralized bone nodules that consisted of 50-100 cells within an extracellular matrix of collagen-1 and osteocalcin. Dexamethasone in combination with ascorbic acid and beta-glycerophosphate induced the greatest number of bone nodules and was dependent on time of stimulation with a sevenfold increase when added to ES cultures after,but not before,14 days. Co-culture with fetal osteoblasts also provided a potent stimulus for osteogenic differentiation inducing a fivefold increase in nodule number relative to ES cells cultured alone. These data demonstrate the application of a quantitative assay for the derivation of osteoblast lineage progenitors from pluripotent ES cells. This could be applied to obtain purified osteoblasts to analyze mechanisms of osteogenesis and for use of ES cells in skeletal tissue repair.
View Publication
Pozzi S et al. (JUL 2006)
Experimental hematology 34 7 934--42
Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation.
OBJECTIVE: Multipotent mesenchymal stromal cells (MSCs) are endowed with multilineage differentiative potential and immunomodulatory properties. It is still a matter of debate whether donor MSCs have sustained engraftment potential in host bone marrow (BM) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The aim of this study was to analyze the donor/recipient origin of MSCs in children receiving allogeneic either BM or cord blood (CB) transplantation. METHODS: Thirty-seven pediatric patients undergoing allo-HSCT for either a malignant or a nonmalignant disorder were enrolled in the study; 19 received CB and 18 BM transplantation. Results were compared with those obtained in 14 adults given BM transplantation for either malignant or nonmalignant disorders. MSCs were grown from BM aspirates obtained 1-17 and 2-192 months after allo-HSCT in pediatric and adult patients,respectively. MSC samples at the third-fourth passage were phenotypically characterized. Donor/recipient origin of MSCs was assessed by amelogenin assay and microsatellite analysis. RESULTS: MSCs could be grown from 30 of 37 children; at the third-fourth passage MSCs resulted positive (textgreater or = 98%) for CD73,CD105,CD106,CD29,CD13,CD44 and negative (textless or = 1%) for CD34,CD45,CD14. Mixed chimerism with donor cells was observed in 4 BM and 5 CB transplantation recipients,respectively; full recipient chimerism was detected in the remaining children. Full recipient MSC chimerism was observed also in all assessable (12/14) adult patients. CONCLUSIONS: BM of pediatric patients might be a more favorable milieu than that of adults for sustained engraftment of transplanted MSCs. MSCs able to engraft in the host can be transferred with cryopreserved CB units.
View Publication
Quang T et al. (JAN 2014)
PloS one 9 1 e86031
Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells.
Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general,4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types,whereas in feeder-free systems,up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0,0.4 or 4 ng/ml of bFGF for up to 23 passages,as well as parallel cultures of H9 and DF19 in media supplemented with 4,20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested,bFGF supplement demonstrated inhibitory effect over growth expansion,single cell colonization and recovery from freezing in a dosage dependent manner. In addition,bFGF exerted differential effects on different cell lines,inducing H1 and DF19 differentiation at 4 ng/ml or higher,while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0,0.4 or 4 ng/ml bFGF excluding H1-4 ng,as well as H9 cultured in 4,20 and 100 ng/ml bFGF. However,DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells,and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.
View Publication
Sokolov M and Neumann R ( 2014)
International Journal of Molecular Sciences 15 1 588--604
Effects of low doses of ionizing radiation exposures on stress-responsive gene expression in human embryonic stem cells
There is a great deal of uncertainty on how low (≤ 0.1 Gy) doses of ionizing radiation (IR) affect human cells,partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests' radiation,natural background radiation,and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types,we established a novel,human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and,as a reference,relatively high dose of 1 Gy of IR. Here,we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes,including CDKN1A,GADD45A,etc. at 2 and 16 h post-IR,representing early" and "late" radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures."
View Publication
Yu J et al. (JAN 2011)
PloS one 6 3 e17557
Efficient feeder-free episomal reprogramming with small molecules.
Genetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) could offer replenishable cell sources for transplantation therapies. To fulfill their promises,human iPSCs will ideally be free of exogenous DNA (footprint-free),and be derived and cultured in chemically defined media free of feeder cells. Currently,methods are available to enable efficient derivation of footprint-free human iPSCs. However,each of these methods has its limitations. We have previously derived footprint-free human iPSCs by employing episomal vectors for transgene delivery,but the process was inefficient and required feeder cells. Here,we have greatly improved the episomal reprogramming efficiency using a cocktail containing MEK inhibitor PD0325901,GSK3β inhibitor CHIR99021,TGF-β/Activin/Nodal receptor inhibitor A-83-01,ROCK inhibitor HA-100 and human leukemia inhibitory factor. Moreover,we have successfully established a feeder-free reprogramming condition using chemically defined medium with bFGF and N2B27 supplements and chemically defined human ESC medium mTeSR1 for the derivation of footprint-free human iPSCs. These improvements enabled the routine derivation of footprint-free human iPSCs from skin fibroblasts,adipose tissue-derived cells and cord blood cells. This technology will likely be valuable for the production of clinical-grade human iPSCs.
View Publication
Dí et al. (DEC 2010)
Cardiovascular research 88 3 502--11
Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI.
AIMS: Endothelial progenitor cells (EPC) have been shown to repair pulmonary endothelium,although they can also migrate into the arterial intima and differentiate into smooth muscle-like (mesenchymal) cells contributing to intimal hyperplasia. The molecular mechanisms by which this process proceeds have not been fully elucidated. Here,we study whether genes involved in the endothelial-to-mesenchymal transition (EnMT) may contribute to the mesenchymal phenotype acquisition of EPC and we evaluate whether transforming growth factor β1 (TGFβ1) is involved in this process. METHODS AND RESULTS: Our results show that co-culture of EPC with smooth muscle cells (SMC) increases the expression of the mesenchymal cell markers α-smooth muscle actin,sm22-α,and myocardin,and decreases the expression of the endothelial cell marker CD31. In the same conditions,we also observed a concomitant increase in the gene expression of the EnMT-related transcription factors: slug,snail,zeb1,and endothelin-1. This indicates that mesenchymal phenotype acquisition occurred through an EnMT-like process. Inhibition of TGFβ receptor I (TGFβRI) downregulated snail gene expression,blocked the EnMT,and facilitated the differentiation of EPC to the endothelial cell lineage. Furthermore,TGFβRI inhibition decreased migration of EPC stimulated by SMC without affecting their functionality and adhesion capacity. CONCLUSION: These results indicate that EPC may differentiate into SMC-like cells through an EnMT-like process and that TGFβI plays an important role in the fate of EPC.
View Publication
Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures.
Chondrogenesis of mesenchymal stem cells (MSCs) is typically induced when they are condensed into a single aggregate and exposed to transforming growth factor-beta (TGF-beta). Hypoxia,like aggregation and TGF-beta delivery,may be crucial for complete chondrogenesis. However,the pellet dimensions and associated self-induced oxygen gradients of current chondrogenic methods may limit the effectiveness of in vitro differentiation and subsequent therapeutic uses. Here we describe the use of embryoid body-forming technology to produce microscopic aggregates of human bone marrow MSCs (BM-MSCs) for chondrogenesis. The use of micropellets reduces the formation of gradients within the aggregates,resulting in a more homogeneous and controlled microenvironment. These micropellet cultures (approximately 170 cells/micropellet) as well as conventional pellet cultures (approximately 2 x 10(5) cells/pellet) were chondrogenically induced under 20% and 2% oxygen environments for 14 days. Compared to conventional pellets under both environments,micropellets differentiated under 2% O(2) showed significantly increased sulfated glycosaminoglycan (sGAG) production and more homogeneous distribution of proteoglycans and collagen II. Aggrecan and collagen II gene expressions were increased in pellet cultures differentiated under 2% O(2) relative to 20% O(2) pellets but 2% O(2) micropellets showed even greater increases in these genes,as well as increased SOX9. These results suggest a more advanced stage of chondrogenesis in the micropellets accompanied by more homogeneous differentiation. Thus,we present a new method for enhancing MSC chondrogenesis that reveals a unique relationship between oxygen tension and aggregate size. The inherent advantages of chondrogenic micropellets over a single macroscopic aggregate should allow for easy integration with a variety of cartilage engineering strategies.
View Publication