Sakaki-Yumoto M et al. (JUN 2013)
Journal of Biological Chemistry 288 25 18546--18560
Smad2 Is essential for maintenance of the human and mouse primed pluripotent stem cell state
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However,the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2,but not Smad3,is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells,in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm,mesoderm,and germ cell lineages. Additionally,induction of Cdx2 expression,as a result of decreased Smad2 expression,leads to repression of Oct4 expression,which,together with the decreased Nanog expression,accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.
View Publication
Reference
Groß et al. (JUN 2013)
Current molecular medicine 13 5 765--776
Improved generation of patient-specific induced pluripotent stem cells using a chemically-defined and matrigel-based approach.
Reprogramming of somatic cells into patient-specific pluripotent analogues of human embryonic stem cells (ESCs) emerges as a prospective therapeutic angle in molecular medicine and a tool for basic stem cell biology. However,the combination of relative inefficiency and high variability of non-defined culture conditions precluded the use of this technique in a clinical setting and impeded comparability between laboratories. To overcome these obstacles,we sequentially devised a reprogramming protocol using one lentiviral-based polycistronic reprogramming construct,optimized for high co-expression of OCT4,SOX2,KLF4 and MYC in conjunction with small molecule inhibitors of non-permissive signaling cascades,such as transforming growth factor $\$(SB431542),MEK/ERK (PD0325901) and Rho-kinase signaling (Thiazovivin),in a defined extracellular environment. Based on human fetal liver fibroblasts we could efficiently derive induced pluripotent stem cells (iPSCs) within 14 days. We attained efficiencies of up to 10.97±1.71% resulting in 79.5- fold increase compared to non-defined reprogramming using four singular vectors. We show that the overall increase of efficiency and temporal kinetics is a combinatorial effect of improved lentiviral vector design,signaling inhibition and definition of extracellular matrix (Matrigel®) and culture medium (mTESR®1). Using this protocol,we could derive iPSCs from patient fibroblasts,which were impermissive to classical reprogramming efforts,and from a patient suffering from familial platelet disorder. Thus,our defined protocol for highly efficient reprogramming to generate patient-specific iPSCs,reflects a big step towards therapeutic and broad scientific application of iPSCs,even in previously unfeasible settings.
View Publication
Reference
Schulze HG et al. (JUN 2013)
The Analyst 138 12 3416
Label-free imaging of mammalian cell nucleoli by Raman microspectroscopy
The nucleolus is a prominent subnuclear structure whose major function is the transcription and assembly of ribosome subunits. The size of the nucleolus varies with the cell cycle,proliferation rate and stress. Changes in nucleolar size,number,chemical composition,and shape can be used to characterize malignant cells. We used spontaneous Raman microscopy as a label-free technique to examine nucleolar spatial and chemical features. Raman images of the 1003 cm(-1) phenylalanine band revealed large,well-defined subnuclear protein structures in MFC-7 breast cancer cells. The 783 cm(-1) images showed that nucleic acids were similarly distributed,but varied more in intensity,forming observable high-intensity regions. High subnuclear RNA concentrations were observed within some of these regions as shown by 809 cm(-1) Raman band images. Principal component analyses of sub-images and library spectra validated the subnuclear presence of RNA. They also revealed that an actin-like protein covaried with DNA within the nucleolus,a combination that accounted for 64% or more of the spectral variance. Embryonic stem cells are another rapidly proliferating cell type,but their nucleoli were not as large or well defined. Estimating the size of the larger MCF-7 nucleolus was used to show the utility of Raman microscopy for morphometric analyses. It was concluded that imaging based on Raman microscopy provides a promising new method for the study of nucleolar function and organization,in the evaluation of drug and experimental effects on the nucleolus,and in clinical diagnostics and prognostics.
View Publication
Reference
Telugu BP et al. (JUL 2013)
Placenta 34 7 536--543
Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas
AbstractIntroduction Preeclampsia and other placental pathologies are characterized by a lack of spiral artery remodeling associated with insufficient invasion by extravillous trophoblast cells (EVT). Because trophoblast invasion occurs in early pregnancy when access to human placental tissue is limited,there is a need for model systems for the study of trophoblast differentiation and invasion. Human embryonic stem cells (hESC) treated with BMP4- differentiate to trophoblast,and express HLA-G,a marker of EVT. The goals of the present study were to further characterize the HLA-G+ cells derived from BMP4-treated hESC,and determine their suitability as a model. Methods HESC were treated with BMP4 under 4% or 20% oxygen and tested in Matrigel invasion chambers. Both BMP4-treated hESC and primary human placental cells were separated into HLA-G+ and HLA-G−/TACSTD2+ populations with immunomagnetic beads and expression profiles analyzed by microarray. Results There was a 10-fold increase in invasion when hESC were BMP4-treated. There was also an independent,stimulatory effect of oxygen on this process. Invasive cells expressed trophoblast marker KRT7,and the majority were also HLA-G+. Gene expression profiles revealed that HLA-G+,BMP4-treated hESC were similar to,but distinct from,HLA-G+ cells isolated from first trimester placentas. Whereas HLA-G+ and HLA-G− cells from first trimester placentas had highly divergent gene expression profiles,HLA-G+ and HLA-G− cells from BMP4-treated hESC had somewhat similar profiles,and both expressed genes characteristic of early trophoblast development. Conclusions We conclude that hESC treated with BMP4 provide a model for studying transition to the EVT lineage.
View Publication
Reference
Sanchez-Diaz PC et al. (APR 2013)
PLoS ONE 8 4 e61622
De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development.
BackgroundmicroRNAs (miRNAs) have been implicated in the control of many biological processes and their deregulation has been associated with many cancers. In recent years,the cancer stem cell (CSC) concept has been applied to many cancers including pediatric. We hypothesized that a common signature of deregulated miRNAs in the CSCs fraction may explain the disrupted signaling pathways in CSCs.Methodology/ResultsUsing a high throughput qPCR approach we identified 26 CSC associated differentially expressed miRNAs (DEmiRs). Using BCmicrO algorithm 865 potential CSC associated DEmiR targets were obtained. These potential targets were subjected to KEGG,Biocarta and Gene Ontology pathway and biological processes analysis. Four annotated pathways were enriched: cell cycle,cell proliferation,p53 and TGF-beta/BMP. Knocking down hsa-miR-21-5p,hsa-miR-181c-5p and hsa-miR-135b-5p using antisense oligonucleotides and small interfering RNA in cell lines led to the depletion of the CSC fraction and impairment of sphere formation (CSC surrogate assays).ConclusionOur findings indicated that CSC associated DEmiRs and the putative pathways they regulate may have potential therapeutic applications in pediatric cancers.
View Publication
Reference
Caron NJ et al. (OCT 2013)
Biotechnology and Bioengineering 110 10 2706--2716
A human embryonic stem cell line adapted for high throughput screening
Human embryonic stem cells (hESCs) can be differentiated into multiple cell types with great therapeutic potential. However,optimizing the often multi-week cultures to obtain sufficient differentiated cell yields has been in part limited by the high variability of even parallel hESC differentiation cultures. We describe the isolation and features of a subline of CA1 hESCs (CA1S) that display a very high 25% cloning efficiency while retaining many properties of the parental hESCs,including being karyotypically normal and their ability to generate teratomas containing all three germ layers. Although more detailed analysis revealed that CA1S cells have a 3.8 Mb genomic duplication on chromosome 20,they remain highly useful. In particular,CA1S cells are readily expanded at high yields in culture and possess greatly reduced well-to-well variation even when seeded at 100 cells/well. Thus,108 CA1S cells can be generated within one week from 106 cells to seed 106 wells. We determined that CA1S cells have the capacity to follow established in vitro differentiation protocols to pancreatic progenitors and subsequent hormone-positive cell types and used CA1S cells to explore definitive endoderm induction in a high performance screen (Z-factor = 0.97). This system revealed that CA1S cells do not require WNT3A to efficiently form definitive endoderm,a finding that was confirmed with H1 hESCs,although H1 cells did show modest benefits of high WNT3A doses. Proliferative index measurements of CA1S cells were shown to rapidly reflect their differentiation status in a high throughput system. Though results obtained with CA1S cells will need to be confirmed using conventional hESC lines,these cells should ease the development of optimized hESC growth and differentiation protocols. In particular,they should limit the more arduous secondary screens using hESCs to a smaller number of variables and doses. Biotechnol. Bioeng. 2013;110: 2706–2716. textcopyright 2013 Wiley Periodicals,Inc.
View Publication
Reference
Khan M et al. (JUL 2013)
Biomaterials 34 21 5336--5343
Delivery of reprogramming factors into fibroblasts for generation of non-genetic induced pluripotent stem cells using a cationic bolaamphiphile as a non-viral vector
Protein delivery allows a clinical effect to be directly realized without genetic modification of the host cells. We have developed a cationic bolaamphiphile as a non-viral vector for protein delivery application. The relatively low toxicity and efficient protein delivery by the cationic bolaamphiphile prompted us to test the system for the generation of induced pluripotent stem cells (iPSCs) as an alternative to the conventional vector-based genetic approach. Studies on the kinetics and cytotoxicity of the protein delivery system led us to use an optimized cationic bolaamphiphile-protein complex ratio of 7:1 (wt/wt) and a 3 h period of incubation with human fibroblasts,to ensure complete and non-toxic protein delivery of the reprogramming proteins. The reprogrammed cells were shown to exhibit the characteristics of embryonic stem cells,including expression of pluripotent markers,teratoma formation in SCID mice,and ability to be differentiated into a specific lineage,as exemplified by neuronal differentiation.
View Publication
A fast, automated, polynomial-based cosmic ray spike-removal method for the high-throughput processing of Raman spectra.
Raman spectra often contain undesirable,randomly positioned,intense,narrow-bandwidth,positive,unidirectional spectral features generated when cosmic rays strike charge-coupled device cameras. These must be removed prior to analysis,but doing so manually is not feasible for large data sets. We developed a quick,simple,effective,semi-automated procedure to remove cosmic ray spikes from spectral data sets that contain large numbers of relatively homogenous spectra. Although some inhomogeneous spectral data sets can be accommodated—it requires replacing excessively modified spectra with the originals and removing their spikes with a median filter instead—caution is advised when processing such data sets. In addition,the technique is suitable for interpolating missing spectra or replacing aberrant spectra with good spectral estimates. The method is applied to baseline-flattened spectra and relies on fitting a third-order (or higher) polynomial through all the spectra at every wavenumber. Pixel intensities in excess of a threshold of 3× the noise standard deviation above the fit are reduced to the threshold level. Because only two parameters (with readily specified default values) might require further adjustment,the method is easily implemented for semi-automated processing of large spectral sets.
View Publication
Reference
Brown HF et al. (JUN 2013)
Journal of Virology 87 12 7127--39
Potential of Herpesvirus Saimiri-Based Vectors To Reprogram a Somatic Ewing's Sarcoma Family Tumor Cell Line
Herpesvirus saimiri (HVS) infects a range of human cell types with high efficiency. Upon infection,the viral genome can persist as high-copy-number,circular,nonintegrated episomes that segregate to progeny cells upon division. This allows HVS-based vectors to stably transduce a dividing cell population and provide sustained transgene expression in vitro and in vivo. Moreover,the HVS episome is able to persist and provide prolonged transgene expression during in vitro differentiation of mouse and human hemopoietic progenitor cells. Together,these properties are advantageous for induced pluripotent stem cell (iPSC) technology,whereby stem cell-like cells are generated from adult somatic cells by exogenous expression of specific reprogramming factors. Here we assess the potential of HVS-based vectors for the generation of induced pluripotent cancer stem-like cells (iPCs). We demonstrate that HVS-based exogenous delivery of Oct4,Nanog,and Lin28 can reprogram the Ewing's sarcoma family tumor cell line A673 to produce stem cell-like colonies that can grow under feeder-free stem cell culture conditions. Further analysis of the HVS-derived putative iPCs showed some degree of reprogramming into a stem cell-like state. Specifically,the putative iPCs had a number of embryonic stem cell characteristics,staining positive for alkaline phosphatase and SSEA4,in addition to expressing elevated levels of pluripotent marker genes involved in proliferation and self-renewal. However,differentiation trials suggest that although the HVS-derived putative iPCs are capable of differentiation toward the ectodermal lineage,they do not exhibit pluripotency. Therefore,they are hereby termed induced multipotent cancer cells.
View Publication
Delivery of Proteases in Aqueous Two-Phase Systems Enables Direct Purification of Stem Cell Colonies from Feeder Cell Co-Cultures for Differentiation into Functional Cardiomyocytes
Patterning of bioactive enzymes with subcellular resolution is achieved by dispensing droplets of dextran (DEX) onto polyethylene glycol (PEG)-covered cells though a glass capillary needle connected to a pneumatic pump. This technique is applied to purify colonies of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblast (MEF) feeder cultures and inefficiently induced iPSC colonies by selectively dissociating the iPSCs with proteases.
View Publication
Reference
Linta L et al. (JUL 2013)
Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft 195 4 303--311
Calcium activated potassium channel expression during human iPS cell-derived neurogenesis.
The family of calcium activated potassium channels of low and intermediate conductance,known as SK channels,consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes,such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date,the role of SK channels in developmental processes has been merely a marginal focus of investigation,although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently,several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein,we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells,neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly,we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis. ?? 2013 Elsevier GmbH.
View Publication
Reference
Su H et al. (JUL 2013)
Stem Cell Research 11 1 529--539
Transplanted motoneurons derived from human induced pluripotent stem cells form functional connections with target muscle
Induced pluripotent stem cells (iPSCs) hold promise for the treatment of motoneuron diseases because of their distinct features including pluripotency,self-derivation and potential ability to differentiate into motoneurons. However,it is still unknown whether human iPSC-derived motoneurons can functionally innervate target muscles in vivo,which is the definitive sign of successful cell therapy for motoneuron diseases. In the present study,we demonstrated that human iPSCs derived from mesenchymal cells of the umbilical cord possessed a high yield in neural differentiation. Using a chemically-defined in vitro system,human iPSCs efficiently differentiated into motoneurons which displayed typical morphology,expressed specific molecules,and generated repetitive trains of action potentials. When transplanted into the injured musculocutaneous nerve of rats,they survived robustly,extended axons along the nerve,and formed functional connections with the target muscle (biceps brachii),thereby protecting the muscle from atrophy. Our study provides evidence for the first time that human iPSC-derived motoneurons are truly functional not only in vitro but also in vivo,and they have potential for stem cell-based therapies for motoneuron diseases. textcopyright 2013 Elsevier B.V.
View Publication