Yanagimachi MD et al. (APR 2013)
PLoS ONE 8 4 e59243
Robust and Highly-Efficient Differentiation of Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-Free Conditions
Monocytic lineage cells (monocytes,macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established,these methods depend on the use of xenogeneic materials and,therefore,have a relatively poor-reproducibility. Here,we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3 × 10(6) ± 0.3 × 10(6) floating monocytes from approximately 30 clusters of ESCs/iPSCs 5-6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine,disease-specific iPSC studies and drug discovery.
View Publication
Reference
Singh A et al. (MAY 2013)
Nature Methods 10 5 438--444
Adhesion strength-based, label-free isolation of human pluripotent stem cells
We demonstrate substantial differences in 'adhesive signature' between human pluripotent stem cells (hPSCs),partially reprogrammed cells,somatic cells and hPSC-derived differentiated progeny. We exploited these differential adhesion strengths to rapidly (over approximately 10 min) and efficiently isolate fully reprogrammed induced hPSCs (hiPSCs) as intact colonies from heterogeneous reprogramming cultures and from differentiated progeny using microfluidics. hiPSCs were isolated label free,enriched to 95%-99% purity with textgreater80% survival,and had normal transcriptional profiles,differentiation potential and karyotypes. We also applied this strategy to isolate hPSCs (hiPSCs and human embryonic stem cells) during routine culture and show that it may be extended to isolate hPSC-derived lineage-specific stem cells or differentiated cells.
View Publication
Reference
Selekman JA et al. (DEC 2013)
Tissue engineering. Part C,Methods 19 12 949--60
Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions.
Human pluripotent stem cells (hPSCs) have an unparalleled potential to generate limitless quantities of any somatic cell type. However,current methods for producing populations of various somatic cell types from hPSCs are generally not standardized and typically incorporate undefined cell culture components often resulting in variable differentiation efficiencies and poor reproducibility. To address this,we have developed a defined approach for generating epithelial progenitor and epidermal cells from hPSCs. In doing so,we have identified an optimal starting cell density to maximize yield and maintain high purity of K18+/p63+ simple epithelial progenitors. In addition,we have shown that the use of synthetic,defined substrates in lieu of Matrigel and gelatin can successfully facilitate efficient epithelial differentiation,maintaining a high (backslashtextgreater75%) purity of K14+/p63+ keratinocyte progenitor cells and at a two to threefold higher yield than a previously reported undefined differentiation method. These K14+/p63+ cells also exhibited a higher expansion potential compared to cells generated using an undefined differentiation protocol and were able to terminally differentiate and recapitulate an epidermal tissue architecture in vitro. In summary,we have demonstrated the production of populations of functional epithelial and epidermal cells from multiple hPSC lines using a new,completely defined differentiation strategy.
View Publication
Disease-causing Mitochondrial Heteroplasmy Segregated within Induced Pluripotent Stem Cell Clones Derived from A MELAS Patient
Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA),known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as MELAS demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multi-lineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts,the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA,resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. Upon comparative differentiation of iPSC clones,improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared to isogenic clones with high heteroplasmy. Thus,mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny,and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual mitochondrial diseases.
View Publication
Reference
Xia G et al. (APR 2013)
Cellular reprogramming 15 2 166--77
Generation of neural cells from DM1 induced pluripotent stem cells as cellular model for the study of central nervous system neuropathogenesis.
Dystrophia myotonica type 1 (DM1) is an autosomal dominant multisystem disorder. The pathogenesis of central nervous system (CNS) involvement is poorly understood. Disease-specific induced pluripotent stem cell (iPSC) lines would provide an alternative model. In this study,we generated two DM1 lines and a normal iPSC line from dermal fibroblasts by retroviral transduction of Yamanaka's four factors (hOct4,hSox2,hKlf4,and hc-Myc). Both DM1 and control iPSC clones showed typical human embryonic stem cell (hESC) growth patterns with a high nuclear-to-cytoplasm ratio. The iPSC colonies maintained the same growth pattern through subsequent passages. All iPSC lines expressed stem cell markers and differentiated into cells derived from three embryonic germ layers. All iPSC lines underwent normal neural differentiation. Intranuclear RNA foci,a hallmark of DM1,were detected in DM1 iPSCs,neural stem cells (NSCs),and terminally differentiated neurons and astrocytes. In conclusion,we have successfully established disease-specific human DM1 iPSC lines,NSCs,and neuronal lineages with pathognomonic intranuclear RNA foci,which offer an unlimited cell resource for CNS mechanistic studies and a translational platform for therapeutic development.
View Publication
Reference
Moore JC (JAN 2013)
997 35--43
Generation of Human-Induced Pluripotent Stem Cells by Lentiviral Transduction
Human somatic cells can be reprogrammed to the pluripotent state to become human-induced pluripotent stem cells (hiPSC). This reprogramming is achieved by activating signaling pathways that are expressed during early development. These pathways can be induced by ectopic expression of four transcription factors—Oct4,Sox2,Klf4,and c-Myc. Although there are many ways to deliver these transcription factors into the somatic cells,this chapter will provide protocols that can be used to generate hiPSC from lentiviruses.
View Publication
Reference
Cordeiro JM et al. (JUL 2013)
Journal of Molecular and Cellular Cardiology 60 1 36--46
Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes
Background: The ability to recapitulate mature adult phenotypes is critical to the development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) as models of disease. The present study examines the characteristics of the transient outward current (Ito) and its contribution to the hiPSC-CM action potential (AP). Method: Embryoid bodies were made from a hiPS cell line reprogrammed with Oct4,Nanog,Lin28 and Sox2. Sharp microelectrodes were used to record APs from beating-clusters (BC) and patch-clamp techniques were used to record Ito in single hiPSC-CM. mRNA levels of Kv1.4,KChIP2 and Kv4.3 were quantified from BCs. Results: BCs exhibited spontaneous beating (60.5??2.6bpm) and maximum-diastolic-potential (MDP) of 67.8??0.8mV (n=155). A small 4-aminopyridine-sensitive phase-1-repolarization was observed in only 6/155 BCs. A robust Ito was recorded in the majority of cells (13.7??1.9 pA/pF at +40mV; n=14). Recovery of Ito from inactivation (at -80mV) showed slow kinetics (??1=200??110ms (12%) and ??2=2380??240ms (80%)) accounting for its minimal contribution to the AP. Transcript data revealed relatively high expression of Kv1.4 and low expression of KChIP2 compared to human native ventricular tissues. Mathematical modeling predicted that restoration of IK1 to normal levels would result in a more negative MDP and a prominent phase-1-repolarization. Conclusion: The slow recovery kinetics of Ito coupled with a depolarized MDP account for the lack of an AP notch in the majority of hiPSC-CM. These characteristics reveal a deficiency for the development of in vitro models of inherited cardiac arrhythmia syndromes in which Ito-induced AP notch is central to the disease phenotype. ?? 2013 Elsevier Ltd.
View Publication
Reference
Heng BC et al. (JUL 2013)
Metabolic Engineering 18 9--24
MRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient
Induced pluripotent stem cells (iPSC) have successfully been derived from somatic fibroblasts through transfection of synthetic modified mRNA encoding transcription factors. This technique obviates the use of recombinant DNA and viral vectors in cellular reprogramming. The present study derived iPSC from adipose-derived mesenchymal stem cells (of a 50-year-old female patient) by utilizing a similar technique,but with defined culture medium without feeder cells,during both reprogramming and propagation. Clonal selection was performed to yield 12 putative iPSC lines from individual colonies of nascent reprogrammed cells,starting from 150,000 cells. However,only seven lines maintained their undifferentiated state after 10 continuous serial passages. These seven lines were then subjected to a rigorous battery of analyses to confirm their identity as iPSC. These tests included immunostaining,flow cytometry,qRT-PCR,in vitro differentiation assay,and teratoma formation assay within SCID mice. Positive results were consistently observed in all analyses,thus verifying the cells as fully reprogrammed iPSC. While all 7 iPSC lines displayed normal karyogram up to passage 13,chromosomal anomalies occurred in 4 of 7 lines with extended in vitro culture beyond 24 serial passages. Only three lines retained normal karyotype of 46,XX. The remaining four lines displayed mosaicism of normal and abnormal karyotypes. Hence,this study successfully derived iPSC from abundant and easily accessible adipose tissues of a middle-aged patient; utilizing a mRNA-based integration-free technique under feeder-free conditions. This is a step forward in translating iPSC into personalized regenerative medicine within the clinic. ?? 2013 Elsevier Inc.
View Publication
Reference
Kumagai H et al. (MAY 2013)
Biochemical and Biophysical Research Communications 434 4 710--716
Identification of small molecules that promote human embryonic stem cell self-renewal
Human embryonic stem cells (hESCs) and induced pluripotent cells have the potential to provide an unlimited source of tissues for regenerative medicine. For this purpose,development of defined/xeno-free culture systems under feeder-free conditions is essential for the expansion of hESCs. Most defined/xeno-free media for the culture of hESCs contain basic fibroblast growth factor (bFGF). Therefore,bFGF is thought to have an almost essential role for the expansion of hESCs in an undifferentiated state. Here,we report identification of small molecules,some of which were neurotransmitter antagonists (trimipramine and ethopropazine),which promote long-term hESC self-renewal without bFGF in the medium. The hESCs maintained high expression levels of pluripotency markers,had a normal karyotype after 20 passages,and could differentiate into all three germ layers. ?? 2013 Elsevier Inc.
View Publication
Reference
Lian X et al. (MAR 2013)
PLoS ONE 8 3 e60016
A Small Molecule Inhibitor of Src Family Kinases Promotes Simple Epithelial Differentiation of Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) provide unprecedented opportunities to study the earliest stages of human development in vitro and have the potential to provide unlimited new sources of cells for regenerative medicine. Although previous studies have reported cytokeratin 14+/p63+ keratinocyte generation from hPSCs,the multipotent progenitors of epithelial lineages have not been described and the developmental pathways regulating epithelial commitment remain largely unknown. Here we report membrane localization of β-catenin during retinoic acid (RA)--induced epithelial differentiation. In addition hPSC treatment with the Src family kinase inhibitor SU6656 modulated β-catenin localization and produced an enriched population of simple epithelial cells under defined culture conditions. SU6656 strongly upregulated expression of cytokeratins 18 and 8 (K18/K8),which are expressed in simple epithelial cells,while repressing expression of the pluripotency gene Oct4. This homogeneous population of K18+K8+Oct4- simple epithelial precursor cells can further differentiate into cells expressing keratinocyte or corneal-specific markers. These enriched hPSC-derived simple epithelial cells may provide a ready source for development and toxicology cell models and may serve as a progenitor for epithelial cell transplantation applications.
View Publication
Reference
Son MYMJMY et al. (JUN 2013)
Stem Cells 31 6 1121--1135
Nicotinamide overcomes pluripotency deficits and reprogramming barriers
Crosstalk between intracellular signaling pathways has been extensively studied to understand the pluripotency of human pluripotent stem cells (hPSCs),including human embryonic stem cells and human induced pluripotent stem cells (hiPSCs); however,the contribution of NAD(+) -dependent pathways remains largely unknown. Here,we show that NAD(+) depletion by FK866 (a potent inhibitor of NAD(+) biosynthesis) was fatal in hPSCs,particularly when deriving pluripotent cells from somatic cells and maintaining pluripotency. NAD and its precursors (nicotinamide [NAM] and nicotinic acid) fully replenished the NAD(+) depletion by FK866 in hPSCs. However,only NAM effectively enhanced the reprogramming efficiency and kinetics of hiPSC generation and was also significantly advantageous for the maintenance of undifferentiated hPSCs. Our molecular and functional studies reveal that NAM lowers the barriers to reprogramming by accelerating cell proliferation and protecting cells from apoptosis and senescence by alleviating oxidative stress,reactive oxygen species accumulation,and subsequent mitochondrial membrane potential collapse. We provide evidence that the positive effects of NAM (occurring at concentrations well above the physiological range) on pluripotency control are molecularly associated with the repression of p53,p21,and p16. Our findings establish that adequate intracellular NAD(+) content is crucial for pluripotency; the distinct effects of NAM on pluripotency may be dependent not only on its metabolic advantage as a NAD(+) precursor but also on the ability of NAM to enhance resistance to cellular stress.
View Publication
Reference
Lu B et al. (MAY 2013)
Nature Neuroscience 16 5 562--570
Identification of NUB1 as a suppressor of mutant Huntingtin toxicity via enhanced protein clearance
Huntington's disease is caused by expanded CAG repeats in HTT,conferring toxic gain of function on mutant HTT (mHTT) protein. Reducing mHTT amounts is postulated as a strategy for therapeutic intervention. We conducted genome-wide RNA interference screens for genes modifying mHTT abundance and identified 13 hits. We tested 10 in vivo in a Drosophila melanogaster Huntington's disease model,and 6 exhibited activity consistent with the in vitro screening results. Among these,negative regulator of ubiquitin-like protein 1 (NUB1) overexpression lowered mHTT in neuronal models and rescued mHTT-induced death. NUB1 reduces mHTT amounts by enhancing polyubiquitination and proteasomal degradation of mHTT protein. The process requires CUL3 and the ubiquitin-like protein NEDD8 necessary for CUL3 activation. As a potential approach to modulating NUB1 for treatment,interferon-β lowered mHTT and rescued neuronal toxicity through induction of NUB1. Thus,we have identified genes modifying endogenous mHTT using high-throughput screening and demonstrate NUB1 as an exemplar entry point for therapeutic intervention of Huntington's disease.
View Publication