Chan LY et al. (JAN 2013)
Biomaterials 34 2 382--392
Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells.
Human pluripotent stem cells (hPSCs) are a promising cell source for tissue engineering and regenerative medicine,especially in the field of neurobiology. Neural differentiation protocols have been developed to differentiate hPSCs into specific neural cells,but these predominantly rely on biochemical cues. Recently,differentiation protocols have incorporated topographical cues to increase the total neuronal yield. However,the means by which these topographical cues improve neuronal yield remains unknown. In this study,we explored the effect of topography on the neural differentiation of hPSC by quantitatively studying the changes in marker expression at a transcript and protein level. We found that 2 ??m gratings increase the rate of neural differentiation,and that an additional culture period of 2 ??m gratings in the absence of neurotrophic signals can improve the neural differentiation of hPSCs. We envisage that this work can be incorporated into future differentiation protocols to decrease the differentiation period as well as the biochemical signals added,thus generating hPSC-derived neural cells in a more cost effective and efficient manner. ?? 2012 Elsevier Ltd.
View Publication
Reference
White MP et al. (JAN 2013)
STEM CELLS 31 1 92--103
Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Endothelial Cells
Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes,yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified,homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here,we report a differentiation protocol based on embryonic development that consistently yields large numbers of endothelial cells (ECs) derived from multiple hESCs or iPS cells. Mesoderm differentiation of embryoid bodies was maximized,and defined growth factors were used to generate KDR+ EC progenitors. Magnetic purification of a KDR+ progenitor subpopulation resulted in an expanding,homogeneous pool of ECs that expressed EC markers and had functional properties of ECs. Comparison of the transcriptomes revealed limited gene expression variability between multiple lines of human iPS-derived ECs or between lines of ES- and iPS-derived ECs. These results demonstrate a method to generate large numbers of pure human EC progenitors and differentiated ECs from pluripotent stem cells and suggest individual lineages derived from human iPS cells may have significantly less variance than their pluripotent founders. STEM Cells2013;31:92–103
View Publication
Reference
Liu G-H et al. (NOV 2012)
Nature 491 7425 0--4
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2
Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019),which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization,clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together,our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.
View Publication
Reference
O'Reilly D et al. (FEB 2013)
Genome Research 23 2 281--291
Differentially expressed, variant U1 snRNAs regulate gene expression in human cells
Human U1 small nuclear (sn)RNA,required for splicing of pre-mRNA,is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes,also located on chromosome 1 (1q12-21),were thought to be pseudogenes. However,many of these variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells�
View Publication
Reference
Almeida S et al. (OCT 2012)
Cell reports 2 4 789--798
Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects
The pathogenic mechanisms of frontotemporal dementia (FTD) remain poorly understood. Here we generated multiple induced pluripotent stem cell lines from a control subject,a patient with sporadic FTD,and an FTD patient with a novel heterozygous GRN mutation (progranulin [PGRN] S116X). In neurons and microglia differentiated from PGRN S116X induced pluripotent stem cells,the levels of intracellular and secreted PGRN were reduced,establishing patient-specific cellular models of PGRN haploinsufficiency. Through a systematic screen of inducers of cellular stress,we found that PGRN S116X neurons,but not sporadic FTD neurons,exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover,the serine/threonine kinase S6K2,a component of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways,was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by PGRN expression. Our findings identify cell-autonomous,reversible defects in patient neurons with PGRN deficiency,and provide a compelling model for studying PGRN-dependent pathogenic mechanisms and testing potential therapies
View Publication
Reference
MacLean Ga et al. (OCT 2012)
Proceedings of the National Academy of Sciences 109 43 17567--17572
Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells
Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver,a preleukemic condition termed transient myeloproliferative disorder,and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins,human embryonic stem (hES),and induced pluripotent stem (iPS) cells,were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation,we isolated disomic and trisomic subclones from the same parental iPS line,thereby generating subclones isogenic except for chromosome 21. Under differentiation conditions favoring development of fetal liver-like,γ-globin expressing,definitive hematopoiesis,we found that trisomic cells of hES,iPS,or isogenic origins exhibited a two- to fivefold increase in a population of CD43(+)(Leukosialin)/CD235(+)(Glycophorin A) hematopoietic cells,accompanied by increased multilineage colony-forming potential in colony-forming assays. These findings establish an intrinsic disturbance of multilineage myeloid hematopoiesis in trisomy 21 at the fetal liver stage.
View Publication
Reference
Yang J-Y et al. (JUN 2013)
Cell Transplantation 22 6 945--959
SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells.
Neural cells derived from induced pluripotent stem cells (iPSCs) have the potential for autologous cell therapies in treating patients with severe neurological disorders or injury. However,further study of efficacy and safety are needed in large animal preclinical models that have similar neural anatomy and physiology to humans such as the pig. The pig model for pluripotent stem cell therapy has been made possible for the first time with the development of pig iPSCs (piPSCs) capable of in vitro and in vivo differentiation into tissues of all three germ layers. Still,the question remains if piPSCs are capable of undergoing robust neural differentiation using a system similar to those being used with human iPSCs. In this study,we generated a new line of piPSCs from fibroblast cells that expressed pluripotency markers and were capable of embryoid body differentiation into all three germ layers. piPSCs demonstrated robust neural differentiation forming βIII-TUB/MAP2+ neurons,GFAP+ astrocytes,and O4+ oligodendrocytes and demonstrated strong upregulation of neural cell genes representative of all three major neural lineages of the central nervous system. In the presence of motor neuron signaling factors,piPSC-derived neurons showed expression of transcription factors associated with motor neuron differentiation (HB9 and ISLET1). Our findings demonstrate that SSEA4 expression is required for piPSCs to differentiate into neurons,astrocytes,and oligodendrocytes and furthermore develop specific neuronal subtypes. This indicates that the pigs can fill the need for a powerful model to study autologous neural iPSC therapies in a system similar to humans.
View Publication
Reference
Quenneville S et al. (OCT 2012)
Cell Reports 2 4 766--773
The KRAB-ZFP/KAP1 System Contributes to the Early Embryonic Establishment of Site-Specific DNA Methylation Patterns Maintained during Development
De novo DNA methylation is an essential aspect of the epigenetic reprogramming that takes place during early development,yet factors responsible for its instatement at particular genomic loci are poorly defined. Here,we demonstrate that the KRAB-ZFP-mediated recruitment of KAP1 to DNA in embryonic stem cells (ESCs) induces cytosine methylation. This process is preceded by H3K9 trimethylation,and genome-wide analyses reveal that it spreads over short distances from KAP1-binding sites so as to involve nearby CpG islands. In sharp contrast,in differentiated cells,KRAB/KAP1-induced heterochromatin formation does not lead to DNA methylation. Correspondingly,the methylation status of CpG islands in the adult mouse liver correlates with their proximity to KAP1-binding sites in ESCs,not in hepatocytes. Therefore,KRAB-ZFPs and their cofactor KAP1 are in part responsible for the establishment during early embryogenesis of site-specific DNA methylation patterns that are maintained through development
View Publication
Reference
Ozair MZ et al. (JAN 2013)
STEM CELLS 31 1 35--47
SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism
Human embryonic stem cells (hESCs) provide a valuable window into the dissection of the molecular circuitry underlying the early formation of the human forebrain. However,dissection of signaling events in forebrain development using current protocols is complicated by non-neural contamination and fluctuation of extrinsic influences. Here,we show that SMAD7,a cell-intrinsic inhibitor of transforming growth factor-β (TGFβ) signaling,is sufficient to directly convert pluripotent hESCs to an anterior neural fate. Time course gene expression revealed downregulation of MAPK components,and combining MEK1/2 inhibition with SMAD7-mediated TGFβ inhibition promoted telencephalic conversion. Fibroblast growth factor-MEK and TGFβ-SMAD signaling maintain hESCs by promoting pluripotency genes and repressing neural genes. Our findings suggest that in the absence of these cues,pluripotent cells simply revert to a program of neural conversion. Hence,the primed" state of hESCs requires inhibition of the "default" state of neural fate acquisition. This has parallels in amphibians�
View Publication
Reference
Ku M et al. ( 2012)
Genome biology 13 10 R85
H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions.
BACKGROUND: The histone variant H2A.Z has been implicated in nucleosome exchange,transcriptional activation and Polycomb repression. However,the relationships among these seemingly disparate functions remain obscure.backslashnbackslashnRESULTS: We mapped H2A.Z genome-wide in mammalian ES cells and neural progenitors. H2A.Z is deposited promiscuously at promoters and enhancers,and correlates strongly with H3K4 methylation. Accordingly,H2A.Z is present at poised promoters with bivalent chromatin and at active promoters with H3K4 methylation,but is absent from stably repressed promoters that are specifically enriched for H3K27 trimethylation. We also characterized post-translational modification states of H2A.Z,including a novel species dually-modified by ubiquitination and acetylation that is enriched at bivalent chromatin.backslashnbackslashnCONCLUSIONS: Our findings associate H2A.Z with functionally distinct genomic elements,and suggest that post-translational modifications may reconcile its contrasting locations and roles.
View Publication
Reference
Lagier-Tourenne C et al. (NOV 2012)
Nature neuroscience 15 11 1488--1497
Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs
FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from textgreater5,500 genes in mouse and human brain,primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern,consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of textgreater950 mRNAs,most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain,but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in
View Publication
Reference
Ruiz S et al. (NOV 2012)
Journal of Biological Chemistry 287 48 40767--40778
Generation of a drug-inducible reporter system to study cell reprogramming in human cells
BACKGROUND Strategies on the basis of doxycycline-inducible lentiviruses in mouse cells allowed the examination of mechanisms governing somatic cell reprogramming. RESULTS Using a doxycycline-inducible human reprogramming system,we identified unreported miRs enhancing reprogramming efficiency. CONCLUSION We generated a drug-inducible human reprogramming reporter system as an invaluable tool for genetic or chemical screenings. SIGNIFICANCE These cellular systems provide a tool to enable the advancement of reprogramming technologies in human cells. Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years,reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene,driven by the reactivation of endogenous stem cell specific promoters,was used as a reprogramming reporter signal. However,similar reporter systems in human cells have not been generated. Here,we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system,we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency.
View Publication