Koh S et al. (MAR 2013)
Stem cells and development 22 6 951--63
Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts.
In mice and humans,it has been shown that embryonic and adult fibroblasts can be reprogrammed into pluripotency by introducing 4 transcription factors,Oct3/4,Klf4,Sox2,and c-Myc (OKSM). Here,we report the derivation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts by retroviral OKSM transduction. The isolated canine iPSCs (ciPSCs) were expanded in 3 different culture media [fibroblast growth factor 2 (FGF2),leukemia inhibitory factor (LIF),or FGF2 plus LIF]. Cells cultured in both FGF2 and LIF expressed pluripotency markers [POU5F1 (OCT4),SOX2,NANOG,and LIN28] and embryonic stem cell (ESC)-specific genes (PODXL,DPPA5,FGF5,REX1,and LAMP1) and showed strong levels of alkaline phosphatase expression. In vitro differentiation by formation of embryoid bodies and by directed differentiation generated cell derivatives of all 3 germ layers as confirmed by mRNA and protein expression. In vivo,the ciPSCs created solid tumors,which failed to reach epithelial structure formation,but expressed markers for all 3 germ layers. Array comparative genomic hybridization and chromosomal fluorescence in situ hybridization analyses revealed that while retroviral transduction per se did not result in significant DNA copy number imbalance,there was evidence for the emergence of low-level aneuploidy during prolonged culture or tumor formation. In summary,we were able to derive ciPSCs from adult fibroblasts by using 4 transcription factors. The isolated iPSCs have similar characteristics to ESCs from other species,but the exact cellular mechanisms behind their unique co-dependency on both FGF2 and LIF are still unknown.
View Publication
Reference
Sharma A and Wu JC (JAN 2013)
936 247--256
MicroRNA expression profiling of human-induced pluripotent and embryonic stem cells
Clinical implications of induced pluripotent stem (iPS) cell technology are enormous for personalized medicine. However,extensive use of viral approach for ectopic expression of reprogramming factors is a major hurdle in realization of its true potential. Non-viral methods for making iPS cells,although plausible,are impractical because of high cost. MicroRNAs are important cellular modulators that have been shown to rival transcription factors and are important players in embryonic development. We have generated distinct microRNA-omes" signature of iPS cells that remain in a near embryonic stem (ES) cell state and distinct from differentiated cells. Recent advances in the microRNA field and experimentally validated microRNAs warrant a review in experimental protocols for microRNA expression profile."
View Publication
Reference
Taylor RE et al. (FEB 2013)
Biomedical Microdevices 15 1 171--181
Sacrificial layer technique for axial force post assay of immature cardiomyocytes
Immature primary and stem cell-derived cardiomyocytes provide useful models for fundamental studies of heart development and cardiac disease,and offer potentialbackslashrbackslashnfor patient specific drug testing and differentiation protocols aimed at cardiac grafts. To assess their potential for augmenting heart function,and to gain insight into cardiac growth and disease,tissue engineers must quantify the contractile forces of these single cells. Currently,axial contractile forces of isolated adult heart cells can only be measuredbackslashrbackslashnby two-point methods such as carbon fiber techniques,which cannot be applied to neonatal and stem cell-derived heart cells because they are more difficult to handle and lack a persistent shape. Here we present a novel axial technique for measuring the contractile forces of isolated immature cardiomyocytes. We overcome cell manipulation and patterning challenges by using a thermoresponsive sacrificialbackslashrbackslashnsupport layer in conjunction with arrays of widely separated elastomeric microposts. Our approach has the potential to be high-throughput,is functionally analogous to current gold-standard axial force assays for adult heart cells,and prescribes elongated cell shapes without protein patterning. Finally,we calibrate these force posts withbackslashrbackslashnpiezoresistive cantilevers to dramatically reduce measurement error typical for soft polymer-based force assays. We report quantitative measurements of peak contractile forces up to 146 nN with post stiffness standard error (26 nN) far betterbackslashrbackslashnthan that based on geometry and stiffness estimates alone. The addition of sacrificial layers to future 2D and 3D cell culturebackslashrbackslashnplatforms will enable improved cell placement and the complex suspension of cells across 3D constructs.
View Publication
Reference
Musah S et al. (NOV 2012)
ACS Nano 6 11 10168--10177
Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal
Reaping the promise of human embryonic stem (hES) cells hinges on effective defined culture conditions. Efforts to identify chemically defined environments for hES cell propagation would benefit from understanding the relevant functional properties of the substratum. Biological materials are often employed as substrata,but their complexity obscures a molecular level analysis of their relevant attributes. Because the properties of hydrogels can be tuned and altered systematically,these materials can reveal the impact of substratum features on cell fate decisions. By tailoring the peptide displayed to cells and the substrate mechanical properties,a hydrogel was generated that binds hES cell surface glycosaminoglycans (GAGs) and functions robustly in a defined culture medium to support long-term hES cell self-renewal. A key attribute of the successful GAG-binding hydrogels is their stiffness. Only stiff substrates maintain hES cell proliferation and pluripotency. These findings indicate that cells can respond to mechanical information transmitted via GAG engagement. Additionally,we found that the stiff matrices afforded activation of the paralogous proteins YAP/TAZ,which are transcriptional coactivators implicated in mechanosensing and hES cell pluripotency. These results indicate that the substratum mechanics can be tuned to activate specific pathways linked to pluripotency. Because several different hES and induced pluripotent stem cell lines respond similarly,we conclude that stiff substrata are more effective for the long-term propagation of human pluripotent stem cells.
View Publication
Reference
Lu HF et al. (DEC 2012)
Biomaterials 33 36 9179--87
Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds.
Developing an efficient culture system for controlled human pluripotent stem cell (hPSC) differentiation into selected lineages is a major challenge in realizing stem cell-based clinical applications. Here,we report the use of chitin-alginate 3D microfibrous scaffolds,previously developed for hPSC propagation,to support efficient neuronal differentiation and maturation under chemically defined culture conditions. When treated with neural induction medium containing Noggin/retinoic acid,the encapsulated cells expressed much higher levels of neural progenitor markers SOX1 and PAX6 than those in other treatment conditions. Immunocytochemisty analysis confirmed that the majority of the differentiated cells were nestin-positive cells. Subsequently transferring the scaffolds to neuronal differentiation medium efficiently directed these encapsulated neural progenitors into mature neurons,as detected by RT-PCR and positive immunostaining for neuron markers βIII tubulin and MAP2. Furthermore,flow cytometry confirmed that textgreater90% βIII tubulin-positive neurons was achieved for three independent iPSC and hESC lines,a differentiation efficiency much higher than previously reported. Implantation of these terminally differentiated neurons into SCID mice yielded successful neural grafts comprising MAP2 positive neurons,without tumorigenesis,suggesting a potential safe cell source for regenerative medicine. These results bring us one step closer toward realizing large-scale production of stem cell derivatives for clinical and translational applications.
View Publication
Reference
Ovchinnikov DA et al. (JUL 2012)
World journal of stem cells 4 7 71--9
Generation of a human embryonic stem cell line stably expressing high levels of the fluorescent protein mCherry.
AIM: The generation and characterization of a human embryonic stem cell (hESC) line stably expressing red fluorescent mCherry protein.backslashnbackslashnMETHODS: Lentiviral transduction of a ubiquitously-expressed human EF-1α promoter driven mCherry transgene was performed in MEL2 hESC. Red fluore-scence was assessed by immunofluorescence and flow cytometry. Pluripotency of stably transduced hESC was determined by immunofluorescent pluripotency marker expression,flow cytometry,teratoma assays and embryoid body-based differentiation followed by reverse transcriptase-polymerase chain reaction. Quantification of cell motility and survival was performed with time lapse microscopy.backslashnbackslashnRESULTS: Constitutively fluorescently-labeled hESCs are useful tools for facile in vitro and in vivo tracking of survival,motility and cell spreading on various surfaces before and after differentiation. Here we describe the generation and characterization of a hESC line (MEL2) stably expressing red fluorescent protein,mCherry. This line was generated by random integration of a fluorescent protein-expressing cassette,driven by the ubiquitously-expressed human EF-1α promoter. Stably transfected MEL2-mCherry hESC were shown to express pluripotency markers in the nucleus (POU5F1/OCT4,NANOG and SOX2) and on the cell surface (SSEA4,TRA1-60 and TG30/CD9) and were shown to maintain a normal karyotype in long-term (for at least 35 passages) culture. MEL2-mCherry hESC further readily differentiated into representative cell types of the three germ layers in embryoid body and teratoma based assays and,importantly,maintained robust mCherry expression throughout differentiation. The cell line was next adapted to single-cell passaging,rendering it compatible with numerous bioengineering applications such as measurement of cell motility and cell spreading on various protein modified surfaces,quantification of cell attachment to nanoparticles and rapid estimation of cell survival.backslashnbackslashnCONCLUSION: The MEL2-mCherry hESC line conforms to the criteria of bona fide pluripotent stem cells and maintains red fluorescence throughout differentiation,making it a useful tool for bioengineering and in vivo tracking experiments.
View Publication
Reference
Bahl V et al. (DEC 2012)
Reproductive Toxicology 34 4 529--37
Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models
Electronic cigarettes (EC) and refill fluids are distributed with little information on their pre- and postnatal health effects. This study compares the cytotoxicity of EC refill fluids using embryonic and adult cells and examines the chemical characteristics of refill fluids using HPLC. Refill solutions were tested on human embryonic stem cells (hESC),mouse neural stem cells (mNSC),and human pulmonary fibroblasts (hPF) using the MTT assay,and NOAELs and IC50s were determined from dose-response curves. Spectral analysis was performed when products of the same flavor had different MTT outcomes. hESC and mNSC were generally more sensitive to refill solutions than hPF. All products from one company were cytotoxic to hESC and mNSC,but non-cytotoxic to hPF. Cytotoxicity was not due to nicotine,but was correlated with the number and concentration of chemicals used to flavor fluids. Additional studies are needed to fully assess the prenatal effect of refill fluids. ?? 2012 Elsevier Inc.
View Publication
Reference
Li Y et al. (OCT 2012)
Biochemical and biophysical research communications 426 4 615--619
IGF-1 prevents oxidative stress induced-apoptosis in induced pluripotent stem cells which is mediated by microRNA-1.
Oxidative stress contributes to tissue injury and cell death during the development of various diseases. The present study aims at investigating whether oxidative stress triggered by the exposure to hydrogen peroxide (H2O2) can induce apoptosis of induced pluripotent stem cells (iPS cells) in a mechanism mediated by insulin-like growth factor (IGF-1) and microRNA-1 (miR-1). iPS cells treated with H2O2 showed increases in miR-1 expression,mitochondria dysfunction,cytochrome-c release and apoptosis,Addition of IGF-1 into the iPS cell cultures reduced the H2O2 cytotoxicity. Prediction algorithms showed that 3'-untranslated regions of IGF-1 gene as a target of miR-1. Moreover,miR-1 mimic,but not miR-1 mimic negative control,diminished the protective effect of IGF-1 on H2O2-induced mitochondrial dysfunction,cytochrome-c release and apoptosis in iPS cells. In conclusion,IGF-1 inhibits H2O2-induced mitochondrial dysfunction,cytochrome-c release and apoptosis. IGF-1's effect is,at least partially,regulated by miR-1 in iPS cells. ?? 2012 Elsevier Inc.
View Publication
Reference
Vilchez D et al. (SEP 2012)
Nature 489 7415 304--308
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
Embryonic stem cells can replicate continuously in the absence of senescence and,therefore,are immortal in culture. Although genome stability is essential for the survival of stem cells,proteome stability may have an equally important role in stem-cell identity and function. Furthermore,with the asymmetric divisions invoked by stem cells,the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. Therefore,a firm understanding of how stem cells maintain their proteome is of central importance. Here we show that human embryonic stem cells (hESCs) exhibit high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11 (known as RPN-6 in Caenorhabditis elegans) and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. FOXO4,an insulin/insulin-like growth factor-I (IGF-I) responsive transcription factor associated with long lifespan in invertebrates,regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Proteasome inhibition in hESCs affects the expression of pluripotency markers and the levels of specific markers of the distinct germ layers. Our results suggest a new regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates to hESC function and identity.
View Publication
Reference
Wang Y et al. (DEC 2012)
Circulation research 111 12 1494--1503
Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging
RATIONALE: Molecular imaging has proven to be a vital tool in the characterization of stem cell behavior in vivo. However,the integration of reporter genes has typically relied on random integration,a method that is associated with unwanted insertional mutagenesis and positional effects on transgene expression.backslashnbackslashnOBJECTIVE: To address this barrier,we used genome editing with zinc finger nuclease (ZFN) technology to integrate reporter genes into a safe harbor gene locus (PPP1R12C,also known as AAVS1) in the genome of human embryonic stem cells and human induced pluripotent stem cells for molecular imaging.backslashnbackslashnMETHODS AND RESULTS: We used ZFN technology to integrate a construct containing monomeric red fluorescent protein,firefly luciferase,and herpes simplex virus thymidine kinase reporter genes driven by a constitutive ubiquitin promoter into a safe harbor locus for fluorescence imaging,bioluminescence imaging,and positron emission tomography imaging,respectively. High efficiency of ZFN-mediated targeted integration was achieved in both human embryonic stem cells and induced pluripotent stem cells. ZFN-edited cells maintained both pluripotency and long-term reporter gene expression. Functionally,we successfully tracked the survival of ZFN-edited human embryonic stem cells and their differentiated cardiomyocytes and endothelial cells in murine models,demonstrating the use of ZFN-edited cells for preclinical studies in regenerative medicine.backslashnbackslashnCONCLUSION: Our study demonstrates a novel application of ZFN technology to the targeted genetic engineering of human pluripotent stem cells and their progeny for molecular imaging in vitro and in vivo.
View Publication
Reference
Kawamura M et al. (SEP 2012)
Circulation 126 11 Suppl 1 S29----37
Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model.
BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are a promising source of cells for regenerating myocardium. However,several issues,especially the large-scale preparation of hiPS-CMs and elimination of undifferentiated iPS cells,must be resolved before hiPS cells can be used clinically. The cell-sheet technique is one of the useful methods for transplanting large numbers of cells. We hypothesized that hiPS-CM-sheet transplantation would be feasible,safe,and therapeutically effective for the treatment of ischemic cardiomyopathy.backslashnbackslashnMETHODS AND RESULTS: Human iPS cells were established by infecting human dermal fibroblasts with a retrovirus carrying Oct3/4,Sox2,Klf4,and c-Myc. Cardiomyogenic differentiation was induced by WNT signaling molecules,yielding hiPS-CMs that were almost 90% positive for α-actinin,Nkx2.5,and cardiac troponin T. hiPS-CM sheets were created using thermoresponsive dishes and transplanted over the myocardial infarcts in a porcine model of ischemic cardiomyopathy induced by ameroid constriction of the left anterior descending coronary artery (n=6 for the iPS group receiving sheet transplantation and the sham-operated group; both groups received tacrolimus daily). Transplantation significantly improved cardiac performance and attenuated left ventricular remodeling. hiPS-CMs were detectable 8 weeks after transplantation,but very few survived long term. No teratoma formation was observed in animals that received hiPS-CM sheets.backslashnbackslashnCONCLUSIONS: The culture system used yields a large number of highly pure hiPS-CMs,and hiPS-CM sheets could improve cardiac function after ischemic cardiomyopathy. This newly developed culture system and the hiPS-CM sheets may provide a basis for the clinical use of hiPS cells in cardiac regeneration therapy.
View Publication
Reference
Yi L et al. (NOV 2012)
Cancer Research 72 21 5635--5645
Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation
The inactivation of p53 functions enhances the efficiency and decreases the latency of producing induced pluripotent stem cells (iPSC) in culture. The formation of iPSCs in culture starts with a rapid set of cell divisions followed by an epigenetic reprogramming of the DNA and chromatin. The mechanisms by which the p53 protein inhibits the formation of iPSCs are largely unknown. Using a temperature sensitive mutant of the p53 (Trp53) gene,we examined the impact of the temporal expression of wild type p53 in preventing stem cell induction from somatic cells. We also explored how different p53 mutant alleles affect the reprogramming process. We found that little or no p53 activity favors the entire process of somatic cell reprogramming. Reactivation of p53 at any time point during the reprogramming process not only interrupted the formation of iPSCs,but also induced newly formed stem cells to differentiate. Among p53-regulated genes,p21 (Cdkn1a),but not Puma (Bbc3) played a partial role in iPSCs formation probably by slowing cell division. Activation of p53 functions in iPSCs induced senescence and differentiation in stem cell populations. High rate of birth defects and increases in DNA methylation at the IGF2-H19 loci in female offspring of p53 knockout mice suggested that the absence of p53 may give rise to epigenetic instability in a stochastic fashion. Consistently,selected p53 missense mutations showed differential effects on the stem cell reprogramming efficiency in a c-Myc dependent manner. The absence of p53 activity and functions also contributed to an enhanced efficiency of iPSC production from cancer cells. The production of iPSCs in culture from normal and cancer cells,although different from each other in several ways,both responded to the inhibition of reprogramming by the p53 protein.
View Publication