Neely MD et al. (JUN 2012)
ACS chemical neuroscience 3 6 482--91
DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction.
Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-β1 branches of the TGF-β signaling pathways by the endogenous antagonist,Noggin,and the small molecule SB431542,respectively,induces efficient neuralization of hiPSCs,a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost,consistent activity,and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1,a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration,we could selectively modulate the number of SOX1 expressing cells,whereas PAX6,another neural precursor marker,remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations,therefore,suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into β3-tubulin expressing neurons,a subset of which also express tyrosine hydroxylase. Thus,the combined use of DMH1,a highly specific BMP-pathway inhibitor,and SB431542,a TGF-β1-pathway specific inhibitor,provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors.
View Publication
Reference
Matsuura K et al. (AUG 2012)
Biochemical and biophysical research communications 425 2 321--7
Creation of human cardiac cell sheets using pluripotent stem cells
Although we previously reported the development of cell-dense thickened cardiac tissue by repeated transplantation-based vascularization of neonatal rat cardiac cell sheets,the cell sources for human cardiac cells sheets and their functions have not been fully elucidated. In this study,we developed a bioreactor to expand and induce cardiac differentiation of human induced pluripotent stem cells (hiPSCs). Bioreactor culture for 14 days produced around 8×10(7) cells/100 ml vessel and about 80% of cells were positive for cardiac troponin T. After cardiac differentiation,cardiomyocytes were cultured on temperature-responsive culture dishes and showed spontaneous and synchronous beating,even after cell sheets were detached from culture dishes. Furthermore,extracellular action potential propagation was observed between cell sheets when two cardiac cell sheets were partially overlaid. These findings suggest that cardiac cell sheets formed by hiPSC-derived cardiomyocytes might have sufficient properties for the creation of thickened cardiac tissue.
View Publication
Reference
Chan LY-T et al. (FEB 2012)
Tissue Engineering Part C: Methods 19 2 120914060918004
Normalized Median Fluorescence: An Alternative Flow Cytometry Analysis Method for Tracking Human Embryonic Stem Cell States During Differentiation
Human embryonic stem cells (hESCs) are a promising cell source for tissue engineering and regenerative medicine,but before they can be used in therapies,we must be able to accurately identify the state and progeny of hESCs. One of the most commonly used methods for identification is flow cytometry. Many flow cytometry applications use antibodies to detect the amount of antigen present on/in a cell. This allows for the identification of unique cell populations or the tracking of expression changes within a population during differentiation. The results are typically presented as a percentage of positively expressing cells (%Pos) for a marker of choice,relative to a negative control. However,this reporting term is vulnerable to distortion from outliers and inaccuracy from loss of information about the population's fluorescence intensity. In this article,we describe an alternate strategy that uses the normalized median fluorescence intensity (nMFI),in which the MFI of the stained sample is normalized to the MFI of the negative control,as the reporting term to more accurately describe a population of cells in culture. We observed that nMFI provides a more accurate representation for the quality of a starting population and comparing data of different experimental runs. In addition,we demonstrated that the nMFI is a more sensitive measure of pluripotent and differentiation markers expression changes during hESC differentiation into three germ layer lineages.
View Publication
Reference
Bardy J et al. (SEP 2013)
Tissue engineering. Part C,Methods 19 2 120904064742009
Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells.
Neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSCs) can be differentiated to neural cells that model neurodegenerative diseases and be used in the screening of potential drugs to ameliorate the disease phenotype. Traditionally,NPCs are produced in 2D cultures,in low yields,using a laborious process that includes generation of embryonic bodies,plating,and colony selections. To simplify the process and generate large numbers of hiPSC-derived NPCs,we introduce a microcarrier (MC) system for the expansion of a hiPSC line and its subsequent differentiation to NPC,using iPS (IMR90) as a model cell line. In the expansion stage,a process of cell propagation in serum-free MC culture was developed first in static culture,which is then scaled up in stirred spinner flasks. A 7.7-fold expansion of iPS (IMR90) and cell yield of 1.3×10�?� cells/mL in 7 days of static MC culture were achieved. These cells maintained expression of OCT 3/4 and TRA-1-60 and possessed a normal karyotype over 10 passages. A higher cell yield of 6.1×10�?� cells/mL and 20-fold hiPSC expansion were attained using stirred spinner flasks (seeded from MC static cultures) and changing the medium-exchange regimen from once to twice a day. In the differentiation stage,NPCs were generated with 78%-85% efficiency from hiPSCs using a simple serum-free differentiation protocol. Finally,the integrated process of cell expansion and differentiation of hiPSCs into NPCs using an MC in spinner flasks yielded 333 NPCs per seeded hiPSC as compared to 53 in the classical 2D tissue culture protocol. Similar results were obtained with the HES-3 human embryonic stem cell line. These NPCs were further differentiated into βIII-tubulin�?� neurons,GFAP�?� astrocytes,and O4�?� oligodendrocytes,showing that cells maintained their multilineage differentiation potential.
View Publication
Reference
Hyka-Nouspikel N et al. (SEP 2012)
Stem Cells 30 9 1901--10
Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells
Human embryonic stem cells (hESCs) tend to lose genomic integrity during long periods of culture in vitro and to acquire a cancer-like phenotype. In this study,we aim at understanding the contribution of point mutations to the adaptation process and at providing a mechanistic explanation for their accumulation. We observed that,due to the absence of p21/Waf1/Cip1,cultured hESCs lack proper cell cycle checkpoints and are vulnerable to the kind of DNA damage usually repaired by the highly versatile nucleotide excision repair (NER) pathway. In response to UV-induced DNA damage,the majority of hESCs succumb to apoptosis; however,a subpopulation continues to proliferate,carrying damaged DNA and accumulating point mutations with a typical UV-induced signature. The UV-resistant cells retain their proliferative capacity and potential for pluripotent differentiation and are markedly less apoptotic to subsequent UV exposure. These findings demonstrate that,due to deficient DNA damage response,the modest NER activity in hESCs is insufficient to prevent increased mutagenesis. This provides for the appearance of genetically aberrant hESCs,paving the way for further major genetic changes.
View Publication
Reference
Behar RZ et al. (NOV 2012)
Journal of Pharmacological and Toxicological Methods 66 3 238--245
A method for rapid dose-response screening of environmental chemicals using human embryonic stem cells
Introduction: Human embryonic stem cells (hESC) provide an invaluable model for assessing the effects of environmental chemicals and drugs on human prenatal development. However,hESC are difficult to adapt to 96-well plate screening assays,because they survive best when plated as colonies,which are difficult to count and plate accurately. The purpose of this study is to present an experimental method and analysis procedure to accomplish reliable screening of toxicants using hESC. Methods: We present a method developed to rapidly and easily determine the number of cells in small colonies of hESC spectrophotometerically and then accurately dispense equivalent numbers of cells in 96-well plates. The MTT assay was used to evaluate plating accuracy,and the method was tested using known toxicants. Results: The quality of the plate set-up and analysis procedure was evaluated with NIH plate validation and assessment software. All statistical parameters measured by the software were acceptable,and no drift or edge effects were observed. The 96-well plate MTT assay with hESC was tested by performing a dose-response screen of commercial products,which contain a variety of chemicals. The screen was done using single wells/dose,and the reliability of this method was demonstrated in a subsequent screen of the same products repeated three times. The single and triple screens were in good agreement,and NOAELs and IC50s could be determined from the single screen. The effects of vapor from volatile chemicals were studied,and methods to monitor and avoid vapor effects were incorporated into the assay. Discussion: Our method overcomes the difficulty of using hESC for reliable quantitative 96-well plate assays. It enables rapid dose-response screening using equipment that is commonly available in laboratories that culture hESC. This method could have a broad application in studies of environmental chemicals and drugs using hESC as models of prenatal development. ?? 2012 Elsevier Inc.
View Publication
Reference
Doss MX et al. (JUL 2012)
PLoS ONE 7 7 e40288
Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr).
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) hold promise for therapeutic applications. To serve these functions,the hiPSC-CM must recapitulate the electrophysiologic properties of native adult cardiomyocytes. This study examines the electrophysiologic characteristics of hiPSC-CM between 11 and 121 days of maturity. Embryoid bodies (EBs) were generated from hiPS cell line reprogrammed with Oct4,Nanog,Lin28 and Sox2. Sharp microelectrodes were used to record action potentials (AP) from spontaneously beating clusters (BC) micro-dissected from the EBs (n = 103; 37°C) and to examine the response to 5 µM E-4031 (n = 21) or BaCl(2) (n = 22). Patch-clamp techniques were used to record I(Kr) and I(K1) from cells enzymatically dissociated from BC (n = 49; 36°C). Spontaneous cycle length (CL) and AP characteristics varied widely among the 103 preparations. E-4031 (5 µM; n = 21) increased Bazett-corrected AP duration from 291.8±81.2 to 426.4±120.2 msec (ptextless0.001) and generated early afterdepolarizations in 8/21 preparations. In 13/21 BC,E-4031 rapidly depolarized the clusters leading to inexcitability. BaCl(2),at concentrations that selectively block I(K1) (50-100 µM),failed to depolarize the majority of clusters (13/22). Patch-clamp experiments revealed very low or negligible I(K1) in 53% (20/38) of the cells studied,but presence of I(Kr) in all (11/11). Consistent with the electrophysiological data,RT-PCR and immunohistochemistry studies showed relatively poor mRNA and protein expression of I(K1) in the majority of cells,but robust expression of I(Kr.) In contrast to recently reported studies,our data point to major deficiencies of hiPSC-CM,with remarkable diversity of electrophysiologic phenotypes as well as pharmacologic responsiveness among beating clusters and cells up to 121 days post-differentiation (dpd). The vast majority have a maximum diastolic potential that depends critically on I(Kr) due to the absence of I(K1). Thus,efforts should be directed at producing more specialized and mature hiPSC-CM for future therapeutic applications.
View Publication
Reference
Lagar'Kova MA et al. (FEB 2012)
Bulletin of Experimental Biology and Medicine 152 4 516--518
In vitro histogenesis of human embryonic stem cells into retina components
We developed a protocol of in vitro differentiation of human embryonic stem cells into three-dimensional structures histologically and molecularly similar to the developing retina.
View Publication
Reference
Peng Y et al. (NOV 2012)
Journal of Tissue Engineering and Regenerative Medicine 6 10 e74----86
Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells.
Stable pluripotent feeder-free propagation of human embryonic stem cells (hESCs) prior to their therapeutic applications remains a major challenge. Matrigel™ (BD Singapore) is a murine sarcoma-derived extracellular matrix (ECM) widely used as a cell-free support combined with conditioned or chemically defined media; however,inherent xenogenic and immunological threats invalidate it for clinical applications. Using human fibrogenic cells to generate ECM is promising but currently suffers from inefficient and time-consuming deposition in vitro. We recently showed that macromolecular crowding (MMC) accelerated ECM deposition substantially in vitro. In the current study,we used dextran sulfate 500 kDa as a macromolecular crowder to induce WI-38 fetal human lung fibroblasts at 0.5% serum condition to deposit human ECM in three days. After decellularization,the generated ECMs allowed stable propagation of H9 hESCs over 20 passages in chemically-defined medium (mTEsR1) with an overall improved outcome compared to Matrigel in terms of population doubling while retaining teratoma formation and differentiation capacity. Of significance,only ECMs generated by MMC allowed the successful propagation of hESCs. ECMs were highly complex and in contrast to Matrigel,contained no vitronectin but did contain collagen XII,ig-h3 and novel for hESC-supporting human matrices,substantial amounts of transglutaminase 2. Genome-wide analysis of promoter DNA methylation states revealed high overall similarity between human ECM- and Matrigel-cultured hESCs; however,distinct differences were observed with 49 genes associated with a variety of cellular functions. Thus,human ECMs deposited by MMC by selected fibroblast lines are a suitable human microenvironment for stable hESC propagation and clinically translational settings.
View Publication
Reference
Surmacz B et al. (SEP 2012)
Stem Cells 30 9 1875--84
Directing differentiation of human embryonic stem cells toward anterior neural ectoderm using small molecules
Based on knowledge of early embryo development,where anterior neural ectoderm (ANE) development is regulated by native inhibitors of bone morphogenic protein (BMP) and Nodal/Activin signaling,most published protocols of human embryonic stem cell differentiation to ANE have demonstrated a crucial role for Smad signaling in neural induction. The drawbacks of such protocols include the use of an embryoid body culture step and use of polypeptide secreted factors that are both expensive and,when considering clinical applications,have significant challenges in terms of good manufacturing practices compliancy. The use of small molecules to direct differentiation of pluripotent stem cells toward a specified lineage represents a powerful approach to generate specific cell types for further understanding of biological function,for understanding disease processes,for use in drug discovery,and finally for use in regenerative medicine. We therefore aimed to find controlled and reproducible animal-component-free differentiation conditions that would use only small molecules. Here,we demonstrate that pluripotent stem cells can be reproducibly and efficiently differentiated to PAX6(+) (a marker of neuroectoderm) and OCT4(-) (a marker of pluripotent stem cells) cells with the use of potent small inhibitors of the BMP and Activin/Nodal pathways,and in animal-component-free conditions,replacing the frequently used Noggin and SB431542. We also show by transcript analysis,both at the population level and for the first time at the single-cell level,that differentiated cells express genes characteristic for the development of ANE,in particular for the development of the future forebrain.
View Publication
Reference
Moschidou D et al. (OCT 2012)
Molecular therapy : the journal of the American Society of Gene Therapy 20 10 1953--67
Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach.
Induced pluripotent stem cells (iPSCs) with potential for therapeutic applications can be derived from somatic cells via ectopic expression of a set of limited and defined transcription factors. However,due to risks of random integration of the reprogramming transgenes into the host genome,the low efficiency of the process,and the potential risk of virally induced tumorigenicity,alternative methods have been developed to generate pluripotent cells using nonintegrating systems,albeit with limited success. Here,we show that c-KIT+ human first-trimester amniotic fluid stem cells (AFSCs) can be fully reprogrammed to pluripotency without ectopic factors,by culture on Matrigel in human embryonic stem cell (hESC) medium supplemented with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The cells share 82% transcriptome identity with hESCs and are capable of forming embryoid bodies (EBs) in vitro and teratomas in vivo. After long-term expansion,they maintain genetic stability,protein level expression of key pluripotency factors,high cell-division kinetics,telomerase activity,repression of X-inactivation,and capacity to differentiate into lineages of the three germ layers,such as definitive endoderm,hepatocytes,bone,fat,cartilage,neurons,and oligodendrocytes. We conclude that AFSC can be utilized for cell banking of patient-specific pluripotent cells for potential applications in allogeneic cellular replacement therapies,pharmaceutical screening,and disease modeling.
View Publication
Reference
Chambers SM et al. (JUL 2012)
Nature biotechnology 30 7 715--20
Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors.
Considerable progress has been made in identifying signaling pathways that direct the differentiation of human pluripotent stem cells (hPSCs) into specialized cell types,including neurons. However,differentiation of hPSCs with extrinsic factors is a slow,step-wise process,mimicking the protracted timing of human development. Using a small-molecule screen,we identified a combination of five small-molecule pathway inhibitors that yield hPSC-derived neurons at textgreater75% efficiency within 10 d of differentiation. The resulting neurons express canonical markers and functional properties of human nociceptors,including tetrodotoxin (TTX)-resistant,SCN10A-dependent sodium currents and response to nociceptive stimuli such as ATP and capsaicin. Neuronal fate acquisition occurs about threefold faster than during in vivo development,suggesting that use of small-molecule pathway inhibitors could become a general strategy for accelerating developmental timing in vitro. The quick and high-efficiency derivation of nociceptors offers unprecedented access to this medically relevant cell type for studies of human pain.
View Publication