Zhang H et al. (JUL 2012)
Proceedings of the National Academy of Sciences of the United States of America 109 29 11866--11871
Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel.
Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG),leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS,∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG),which encode two repolarizing potassium currents known as I(Ks) and I(Kr). The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of I(Kr) by reducing voltage sensitivity of inactivation,not via slowing of deactivation,could more effectively restore normal QT duration if I(Ks) is reduced. Using a unique specific chemical activator for I(Kr) that has a primary effect of causing a right shift of V(1/2) for inactivation,we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed,this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast,an I(Kr) chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent.
View Publication
Reference
Won K-JJ et al. (SEP 2012)
Nucleic Acids Research 40 17 8199--8209
Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells.
Human embryonic stem cells (hESCs) hold great promise for regenerative medicine because they can undergo unlimited self-renewal and retain the capability to differentiate into all cell types in the body. Although numerous genes/proteins such as Oct4 and Gata6 have been identified to play critical regulatory roles in self-renewal and differentiation of hESC,the majority of the regulators in these cellular processes and more importantly how these regulators co-operate with each other and/or with epigenetic modifications are still largely unknown. We propose here a systematic approach to integrate genomic and epigenomic data for identification of direct regulatory interactions. This approach allows reconstruction of cell-type-specific transcription networks in embryonic stem cells (ESCs) and fibroblasts at an unprecedented scale. Many links in the reconstructed networks coincide with known regulatory interactions or literature evidence. Systems-level analyses of these networks not only uncover novel regulators for pluripotency and differentiation,but also reveal extensive interplays between transcription factor binding and epigenetic modifications. Especially,we observed poised enhancers characterized by both active (H3K4me1) and repressive (H3K27me3) histone marks that contain enriched Oct4- and Suz12-binding sites. The success of such a systems biology approach is further supported by experimental validation of the predicted interactions.
View Publication
Reference
Lippmann ES et al. (AUG 2012)
Nature biotechnology 30 8 783--791
Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells.
The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover,because of its barrier properties,this endothelial interface restricts uptake of neurotherapeutics. Thus,a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues,including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes,including well-organized tight junctions,appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably,they respond to astrocytes,acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2),and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.
View Publication
Reference
Liang Y et al. (APR 2013)
Chinese journal of cancer 32 4 205--12
The propensity for tumorigenesis in human induced pluripotent stem cells is related with genomic instability.
The discovery of induced pluripotent stem cells(iPSCs) is a promising advancement in the field of regenerative medicine. Previous studies have indicated that the teratoma-forming propensity of iPSCs is variable; however,the relationship between tumorigenic potential and genomic instability in human iPSCs (HiPSCs) remains to be fully elucidated. Here,we evaluated the malignant potential of HiPSCs by using both colony formation assays and tumorigenicity tests. We demonstrated that HiPSCs formed tumorigenic colonies when grown in cancer cell culture medium and produced malignancies in immunodeficient mice. Furthermore,we analyzed genomic instability in HiPSCs using whole-genome copy number variation analysis and determined that the extent of genomic instability was related with both the cells' propensity to form colonies and their potential for tumorigenesis. These findings indicate a risk for potential malignancy of HiPSCs derived from genomic instability and suggest that quality control tests,including comprehensive tumorigenicity assays and genomic integrity validation,should be rigorously executed before the clinical application of HiPSCs. In addition,HiPSCs should be generated through the use of combined factors or other approaches that decrease the likelihood of genomic instability.
View Publication
Reference
Easley CA et al. (JUN 2012)
Cellular reprogramming 14 3 193--203
Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.
Cellular reprogramming from adult somatic cells into an embryonic cell-like state,termed induced pluripotency,has been achieved in several cell types. However,the ability to reprogram human amniotic epithelial cells (hAECs),an abundant cell source derived from discarded placental tissue,has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs),but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore,AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation,including NEUROD1 and SOX17,markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs,we analyzed global DNA methylation,global histone acetylation,and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts,hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise,quantitative gene expression analyses show that hAECs endogenously express OCT4,SOX2,KLF4,and c-MYC,all four factors used in cellular reprogramming. Thus,hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents.
View Publication
Reference
Panyutin IGIV et al. (DEC 2012)
International Journal of Radiation Biology 88 12 954--60
Effect of 5-[(125)I]iodo-2'-deoxyuridine uptake on the proliferation and pluripotency of human embryonic stem cells.
PURPOSE: Human embryonic stem cells (hESC) hold a great potential for regenerative medicine because,in principle,they can differentiate into any cell type found in the human body. In addition,studying the effect of ionizing radiation (IR) on hESC may provide valuable information about the response of human cells to IR exposure in their most naive state,as well as the consequences of IR exposure on the development of organisms. However,the effect of IR,in particular radionuclide uptake,on the pluripotency,proliferation and survival of hESC has not been extensively studied. METHODS: In this study we treated cultured hESC with 5-[(125)I]iodo-2'-deoxyuridine ((125)IdU),a precursor of DNA synthesis. Then we measured the expansion of colonies and expression of pluripotency markers in hESC. RESULTS: We found that uptake of (125)IdU was similar in both hESC and HT1080 human fibrosarcoma cells. However,treatment with 0.1 μCi/ml (125)IdU for 24 hours resulted in complete death of the hESC population; whereas HT1080 cancer cells continued to grow. Treatment with a 10-fold lower dose (125)IdU (0.01 μCi/ml) resulted in colonies of hESC becoming less defined with numerous cells growing in monolayer outside of the colonies showing signs of differentiation. Then we analyzed the expression of pluripotency markers (octamer-binding transcription factor 4 [Oct-4] and stage-specific embryonic antigen-4 [SSEA4]) in the surviving hESC. We found that hESC in the surviving colonies expressed pluripotency markers at levels comparable with those in the non-treated controls. CONCLUSIONS: Our results provide important initial insights into the sensitivity of hESC to IR,and especially that produced by the decay of an internalized radionuclide.
View Publication
Reference
Zhang Z and Alexanian AR (MAY 2014)
Journal of tissue engineering and regenerative medicine 8 5 407--413
The neural plasticity of early-passage human bone marrow-derived mesenchymal stem cells and their modulation with chromatin-modifying agents.
Mesenchymal stem cells (MSCs) in their immature state express a variety of genes of the three germ layers at relatively low or moderate levels that might explain their phenomenal plasticity. Numerous recent studies have demonstrated that under the appropriate conditions in vitro and in vivo the expression of different sets of these genes can be upregulated,turning MSCs into variety of cell lineages of mesodermal,ectodermal and endodermal origin. While transdifferentiation of MSCs is still controversial,these unique properties make MSCs an ideal autologous source of easily reprogrammable cells. Recently,using the approach of cell reprogramming by biological active compounds that interfere with chromatin structure and function,as well as with specific signalling pathways that promote neural fate commitment,we have been able to generate neural-like cells from human bone marrow (BM)-derived MSCs (hMSCs). However,the efficiency of neural transformation of hMSCs induced by this approach gradually declined with passaging. To elucidate the mechanisms that underlie the higher plasticity of early-passage hMSCs,comparative analysis of the expression levels of several pluripotent and neural genes was conducted for early- and late-passage hMSCs. The results demonstrated that early-passage hMSCs expressed the majority of these genes at low and moderate levels that gradually declined at late passages. Neural induction further increased the expression of some of these genes in hMSCs,accompanied by morphological changes into neural-like cells. We concluded that low and moderate expression of several pluripotent and neural genes in early-passage hMSCs could explain their higher plasticity and pliability for neural induction. Copyright textcopyright 2012 John Wiley & Sons,Ltd.
View Publication
Reference
Lim MN et al. (MAY 2012)
Molecular vision 18 1289--300
Ex vivo expanded SSEA-4+ human limbal stromal cells are multipotent and do not express other embryonic stem cell markers.
PURPOSE: The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However,little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated.backslashnbackslashnMETHODS: Limbal stromal cells were derived from corneoscleral rims. The SSEA-4(+) and SSEA-4(-) limbal stromal cells were sorted by fluorescence-activated cells sorting (FACS). Isolated cells were expanded and reanalyzed for their expression of SSEA-4. Expression of MSC and ESC markers on these cells were also analyzed by FACS. In addition,expression of limbal epithelial and corneal stromal proteins such as ATP-binding cassette sub-family G member 2 (ABCG2),tumour protein p63 (p63),paired box 6 (Pax6),cytokeratin 3 (AE5),cytokeratin 10,and keratocan sulfate were evaluated either by immunofluorecence staining or reverse transcription polymerase chain reaction. Appropriate induction medium was used to differentiate these cells into adipocytes,osteocytes,and chondrocytes.backslashnbackslashnRESULTS: Expanded limbal stromal cells expressed the majority of mesenchymal markers. These cells were negative for ABCG2,p63,Pax6,AE-5,and keratocan sulfate. After passaged,a subpopulation of these cells showed low expression of SSEA-4 but were negative for other important ESC surface markers such as Tra-1-60,Tra-1-81,and transcription factors like octamer-binding transcription factor 4 (Oct4),SRY(sex determining region Y)-box 2 (Sox2),and Nanog. Early passaged cells when induced were able to differentiate into adipocytes,osteocytes and chondrocytes.backslashnbackslashnCONCLUSIONS: The expanded limbal stromal cells showed features of multipotent MSC. Our study confirmed the expression of SSEA-4 by a subpopulation of cultured limbal stromal cells. However,despite the expression of SSEA-4,these cells did not express any other markers of ESC. Therefore,we conclude that the cells did not show properties of ESC.
View Publication
Reference
Andrade LNdS et al. (SEP 2012)
Human Molecular Genetics 21 17 3825--3834
Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome
Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities,caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level,CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development,we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here,we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However,iPSCs derived from CSB patient's fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover,these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells,regulating the expression of TP53 and TXNIP and ROS production.
View Publication
Reference
Hazeltine LB et al. (JAN 2012)
International journal of cell biology 2012 508294
Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells
Human pluripotent stem cell (hPSC-) derived cardiomyocytes have potential applications in drug discovery,toxicity testing,developmental studies,and regenerative medicine. Before these cells can be reliably utilized,characterization of their functionality is required to establish their similarity to native cardiomyocytes. We tracked fluorescent beads embedded in 4.4-99.7 kPa polyacrylamide hydrogels beneath contracting neonatal rat cardiomyocytes and cardiomyocytes generated from hPSCs via growth-factor-induced directed differentiation to measure contractile output in response to changes in substrate mechanics. Contraction stress was determined using traction force microscopy,and morphology was characterized by immunocytochemistry for α-actinin and subsequent image analysis. We found that contraction stress of all types of cardiomyocytes increased with substrate stiffness. This effect was not linked to beating rate or morphology. We demonstrated that hPSC-derived cardiomyocyte contractility responded appropriately to isoprenaline and remained stable in culture over a period of 2 months. This study demonstrates that hPSC-derived cardiomyocytes have appropriate functional responses to substrate stiffness and to a pharmaceutical agent,which motivates their use in further applications such as drug evaluation and cardiac therapies.
View Publication
Reference
Lian X et al. (JUL 2012)
Proceedings of the National Academy of Sciences of the United States of America 109 27 E1848--57
Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling.
Human pluripotent stem cells (hPSCs) offer the potential to generate large numbers of functional cardiomyocytes from clonal and patient-specific cell sources. Here we show that temporal modulation of Wnt signaling is both essential and sufficient for efficient cardiac induction in hPSCs under defined,growth factor-free conditions. shRNA knockdown of β-catenin during the initial stage of hPSC differentiation fully blocked cardiomyocyte specification,whereas glycogen synthase kinase 3 inhibition at this point enhanced cardiomyocyte generation. Furthermore,sequential treatment of hPSCs with glycogen synthase kinase 3 inhibitors followed by inducible expression of β-catenin shRNA or chemical inhibitors of Wnt signaling produced a high yield of virtually (up to 98%) pure functional human cardiomyocytes from multiple hPSC lines. The robust ability to generate functional cardiomyocytes under defined,growth factor-free conditions solely by genetic or chemically mediated manipulation of a single developmental pathway should facilitate scalable production of cardiac cells suitable for research and regenerative applications.
View Publication
Reference
Liu J et al. (SEP 2012)
Human Molecular Genetics 21 17 3795--3805
Signaling defects in iPSC-derived fragile X premutation neurons
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a leading monogenic neurodegenerative disorder affecting premutation carriers of the fragile X (FMR1) gene. To investigate the underlying cellular neuropathology,we produced induced pluripotent stem cell-derived neurons from isogenic subclones of primary fibroblasts of a female premutation carrier,with each subclone bearing exclusively either the normal or the expanded (premutation) form of the FMR1 gene as the active allele. We show that neurons harboring the stably-active,expanded allele (EX-Xa) have reduced postsynaptic density protein 95 protein expression,reduced synaptic puncta density and reduced neurite length. Importantly,such neurons are also functionally abnormal,with calcium transients of higher amplitude and increased frequency than for neurons harboring the normal-active allele. Moreover,a sustained calcium elevation was found in the EX-Xa neurons after glutamate application. By excluding the individual genetic background variation,we have demonstrated neuronal phenotypes directly linked to the FMR1 premutation. Our approach represents a unique isogenic,X-chromosomal epigenetic model to aid the development of targeted therapeutics for FXTAS,and more broadly as a model for the study of common neurodevelopmental (e.g. autism) and neurodegenerative (e.g. Parkinsonism,dementias) disorders.
View Publication