Matsa E and Denning C (OCT 2012)
Journal of cardiovascular translational research 5 5 581--92
In vitro uses of human pluripotent stem cell-derived cardiomyocytes.
Functional cardiomyocytes can be efficiently derived from human pluripotent stem cells (hPSCs),which collectively include embryonic and induced pluripotent stem cells. This cellular platform presents exciting new opportunities for development of pharmacologically relevant in vitro screens to detect cardiotoxicity,validate novel drug candidates in preclinical trials and understand complex congenital cardiovascular disorders,to advance current clinical therapies. Here,we discuss the progress and impediments the field has faced in using hPSC-derived cardiomyocytes for these in vitro applications,and highlight that rigorous protocol optimisation and standardisation,scalability and automation are remaining obstacles for the generation of pure,mature and clinically relevant hPSC cardiomyocytes.
View Publication
Reference
Zhao W et al. (MAY 2012)
Molecules (Basel,Switzerland) 17 6 6196--6236
Embryonic stem cell markers.
Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal,therefore helping to accelerate the clinical application of ES cells. Unfortunately,different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells,especially tumor cells. Currently,the marker-based flow cytometry (FCM) technique and magnetic cell sorting (MACS) are the most effective cell isolating methods,and a detailed maker list will help to initially identify,as well as isolate ESCs using these methods. In the current review,we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules,such as lectins and peptides,which bind to ESC via affinity and specificity,are also summarized. In addition,we review several markers that overlap with tumor stem cells (TSCs),which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.
View Publication
Reference
M. Drukker et al. (may 2012)
Nature biotechnology 30 6 531--42
Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells.
To identify early populations of committed progenitors derived from human embryonic stem cells (hESCs),we screened self-renewing,BMP4-treated and retinoic acid-treated cultures with >400 antibodies recognizing cell-surface antigens. Sorting of >30 subpopulations followed by transcriptional analysis of developmental genes identified four distinct candidate progenitor groups. Subsets detected in self-renewing cultures,including CXCR4(+) cells,expressed primitive endoderm genes. Expression of Cxcr4 in primitive endoderm was confirmed in visceral endoderm of mouse embryos. BMP4-induced progenitors exhibited gene signatures of mesoderm,trophoblast and vascular endothelium,suggesting correspondence to gastrulation-stage primitive streak,chorion and allantois precursors,respectively. Functional studies in vitro and in vivo confirmed that ROR2(+) cells produce mesoderm progeny,APA(+) cells generate syncytiotrophoblasts and CD87(+) cells give rise to vasculature. The same progenitor classes emerged during the differentiation of human induced pluripotent stem cells (hiPSCs). These markers and progenitors provide tools for purifying human tissue-regenerating progenitors and for studying the commitment of pluripotent stem cells to lineage progenitors.
View Publication
Reference
Liu J et al. (MAY 2012)
PLoS ONE 7 5 e37559
Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes
We describe a method using atomic force microscopy (AFM) to quantify the mechanobiological properties of pluripotent,stem cell-derived cardiomyocytes,including contraction force,rate,duration,and cellular elasticity. We measured beats from cardiomyocytes derived from induced pluripotent stem cells of healthy subjects and those with dilated cardiomyopathy,and from embryonic stem cell lines. We found that our AFM method could quantitate beat forces of single cells and clusters of cardiomyocytes. We demonstrate the dose-responsive,inotropic effect of norepinephrine and beta-adrenergic blockade of metoprolol. Cardiomyocytes derived from subjects with dilated cardiomyopathy showed decreased force and decreased cellular elasticity compared to controls. This AFM-based method can serve as a screening tool for the development of cardiac-active pharmacological agents,or as a platform for studying cardiomyocyte biology.
View Publication
Reference
Onyshchenko MI et al. (JAN 2012)
Stem Cells International 2012 634914
Stimulation of cultured h9 human embryonic stem cells with thyroid stimulating hormone does not lead to formation of thyroid-like cells.
The sodium-iodine symporter (NIS) is expressed on the cell membrane of many thyroid cancer cells,and is responsible for the radioactive iodine accumulation. However,treatment of anaplastic thyroid cancer is ineffective due to the low expression of NIS on cell membranes of these tumor cells. Human embryonic stem cells (ESCs) provide a potential vehicle to study the mechanisms of NIS expression regulation during differentiation. Human ESCs were maintained on feeder-independent culture conditions. RT-qPCR and immunocytochemistry were used to study differentiation marker expression,(125)I uptake to study NIS function. We designed a two-step protocol for human ESC differentiation into thyroid-like cells,as was previously done for mouse embryonic stem cells. First,we obtained definitive endoderm from human ESCs. Second,we directed differentiation of definitive endoderm cells into thyroid-like cells using various factors,with thyroid stimulating hormone (TSH) as the main differentiating factor. Expression of pluripotency,endoderm and thyroid markers and (125)I uptake were monitored throughout the differentiation steps. These approaches did not result in efficient induction of thyroid-like cells. We conclude that differentiation of human ESCs into thyroid cells cannot be induced by TSH media supplementation alone and most likely involves complicated developmental patterns that are yet to be understood.
View Publication
Reference
Jaremko KL and Marikawa Y (MAY 2013)
Stem cell research 10 3 489--502
Regulation of developmental competence and commitment towards the definitive endoderm lineage in human embryonic stem cells.
Human embryonic stem cells (hESCs) can self-renew and become all three germ layers. Nodal/Activin signaling specifies developmental status in hESCs: moderate Nodal/Activin signaling maintains pluripotency,while enhancement and inhibition promote definitive endoderm (DE) and neuroectoderm (NE) development,respectively. However,how modulation of Nodal/Activin signaling influences developmental competence and commitment toward specific lineages is still unclear. Here,we showed that enhancement of Nodal/Activin signaling for 4 days was necessary and sufficient to upregulate DE markers,while it diminished the upregulation of NE markers by inhibition of Nodal/Activin signaling. This suggests that after 4 days of enhanced Nodal/Activin signaling,hESCs are committed to the DE lineage and have lost competence toward the NE lineage. In contrast,inhibition of Nodal/Activin signaling using LY364947 for 2 days was sufficient to impair competence toward the DE lineage,although cells were still able to activate LEFTY1 and NODAL,direct targets of Nodal/Activin signaling. Expression analyses indicated that the levels of pluripotency regulators NANOG and POU5F1 were significantly diminished by 2 days of LY364947 treatment,although the expression of NANOG,but not POU5F1,was restored immediately upon Activin A treatment. Thus,downregulation of POU5F1 coincided with the abrogation of DE competence caused by inhibition of Nodal/Activin signaling.
View Publication
Reference
Yu QC et al. (JUN 2012)
Blood 119 26 6243--54
APELIN promotes hematopoiesis from human embryonic stem cells.
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein-coupled APELIN receptor (APLNR). APLNR-positive cells,identified by binding of the fluoresceinated peptide ligand,APELIN (APLN),or an anti-APLNR mAb,were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs),increased the expression of hematoendothelial genes in differentiating hESCs,and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore,APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
View Publication
Reference
Loh Y-HH et al. (JAN 2012)
Current protocols in stem cell biology Chapter 4 SUPPL.21 Unit4A.5
Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA
The generation of patient-specific induced pluripotent stem (iPS) cells provides an invaluable resource for cell therapy,in vitro modeling of human disease,and drug screening. To date,most human iPS cells have been generated with integrating retro- and lenti-viruses and are limited in their potential utility because residual transgene expression may alter their differentiation potential or induce malignant transformation. Alternatively,transgene-free methods using adenovirus and protein transduction are limited by low efficiency. This unit describes a protocol for the generation of transgene-free human induced pluripotent stem cells using retroviral transfection of a single vector,which includes the coding sequences of human OCT4,SOX2,KLF4,and cMYC linked with picornaviral 2A plasmids. Moreover,after reprogramming has been achieved,this cassette can be removed using mRNA transfection of Cre recombinase. The method described herein to excise reprogramming factors with ease and efficiency facilitates the experimental generation and use of transgene-free human iPS cells.
View Publication
Reference
Dumitru R et al. (JUN 2012)
Molecular cell 46 5 573--583
Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis.
Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax,which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly,active Bax was maintained at the Golgi rather than at the mitochondria,thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage,active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly,upon differentiation,Bax was no longer active,and cells were not acutely sensitive to DNA damage. Thus,maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death,likely to prevent the propagation of mutations during the early critical stages of embryonic development.
View Publication
Reference
Darabi R et al. (MAY 2012)
Cell stem cell 10 5 610--619
Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice.
A major obstacle in the application of cell-based therapies for the treatment of neuromuscular disorders is obtaining the appropriate number of stem/progenitor cells to produce effective engraftment. The use of embryonic stem (ES) or induced pluripotent stem (iPS) cells could overcome this hurdle. However,to date,derivation of engraftable skeletal muscle precursors that can restore muscle function from human pluripotent cells has not been achieved. Here we applied conditional expression of PAX7 in human ES/iPS cells to successfully derive large quantities of myogenic precursors,which,upon transplantation into dystrophic muscle,are able to engraft efficiently,producing abundant human-derived DYSTROPHIN-positive myofibers that exhibit superior strength. Importantly,transplanted cells also seed the muscle satellite cell compartment,and engraftment is present over 11 months posttransplant. This study provides the proof of principle for the derivation of functional skeletal myogenic progenitors from human ES/iPS cells and highlights their potential for future therapeutic application in muscular dystrophies.
View Publication
Reference
Mekhoubad S et al. (MAY 2012)
Cell stem cell 10 5 595--609
Erosion of dosage compensation impacts human iPSC disease modeling.
Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation,it has been unclear whether such variability impacts their utility for disease modeling. Here,we show that although low-passage female hiPSCs retain the inactive X chromosome of the somatic cell they are derived from,over time in culture they undergo an erosion" of X chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation�
View Publication
Reference
Torrez LB et al. (JAN 2012)
Stem Cells International 2012 417865
Derivation of neural progenitors and retinal pigment epithelium from common marmoset and human pluripotent stem cells
Embryonic and induced pluripotent stem cells (IPSCs) derived from mammalian species are valuable tools for modeling human disease,including retinal degenerative eye diseases that result in visual loss. Restoration of vision has focused on transplantation of neural progenitor cells (NPCs) and retinal pigmented epithelium (RPE) to the retina. Here we used transgenic common marmoset (Callithrix jacchus) and human pluripotent stem cells carrying the enhanced green fluorescent protein (eGFP) reporter as a model system for retinal differentiation. Using suspension and subsequent adherent differentiation cultures,we observed spontaneous in vitro differentiation that included NPCs and cells with pigment granules characteristic of differentiated RPE. Retinal cells derived from human and common marmoset pluripotent stem cells provide potentially unlimited cell sources for testing safety and immune compatibility following autologous or allogeneic transplantation using nonhuman primates in early translational applications.
View Publication