Guan X et al. (MAY 2012)
Stem Cell Research 8 3 410--5
Derivation of human embryonic stem cells with NEMO deficiency.
Deficiency of the nuclear factor-kappa-B essential modulator (NEMO) is a rare X-linked disorder that presents in boys as hypohydrotic ectodermal dysplasia with immunodeficiency due to defective nuclear factor-κB activation. Here we report on the generation of 2 human embryonic stem cell lines from discarded in vitro fertilization (IVF) embryos ascertained via preimplantation genetic diagnosis. We have derived two human embryonic stem cell lines that carry a T458G hypomorphic mutation in exon 4 of the NEMO (or IKBKG) gene. One of the lines is diploid male; the other is diploid female but has clonally inactivated the X-chromosome that harbors the wild-type IKBKG gene. We show that both lines are pluripotent,have the capacity to differentiate into hematopoietic progenitors,and have defective inhibitor of nuclear factor kappa-B kinase activity. These NEMO deficiency hES cell lines provide an unlimited source for differentiated cell types and may serve as a unique tool to study NEMO deficiency and potentially lead to the development of new therapies for this disease.
View Publication
Reference
Fong H et al. (MAR 2012)
Stem cell research 8 2 206--14
Transcriptional regulation of TRKC by SOX2 in human embryonic stem cells.
Human embryonic stem (hES) cells have the dual ability to self-renew and differentiate into specialized cell types. However,in order to realize the full potential of these cells it is important to understand how the genes responsible for their unique characteristics are regulated. In this study we examine the regulation of the tropomyosin-related kinase (TRK) genes which encode for receptors important in hES cell survival and self-renewal. Although the TRK genes have been studied in many neuronal cell types,the regulation of these genes in hES cells is unclear. Our study demonstrates a novel regulatory relationship between the TRKC gene and the transcription factor SOX2. Our results found that hES cells highly express full-length and truncated forms of the TRKC gene. However,examination of the related TRKB gene showed a lower overall expression of both full-length and truncated forms. Through RNA interference,we knocked down expression levels of SOX2 in hES cells and examined the expression of TRKC,as well as TRKB. Upon loss of SOX2 we found that TRKC mRNA levels were significantly downregulated but TRKB levels remained unchanged,demonstrating an important regulatory dependence on SOX2 by TRKC. We also found that TRKC protein levels were also decreased after SOX2 knock down. Further analysis found the regulatory region of TRKC to be highly conserved among many mammals with potential SOX binding motifs. We confirmed a specific binding motif as a site that SOX2 utilizes to directly interact with the TRKC regulatory region. In addition,we found that SOX2 drives expression of the TRKC gene by activating a luciferase reporter construct containing the TRKC regulatory region and the SOX binding motif.
View Publication
Reference
Funk WD et al. (MAR 2012)
Stem Cell Research 8 2 154--64
Evaluating the genomic and sequence integrity of human ES cell lines; comparison to normal genomes
Copy number variation (CNV) is a common chromosomal alteration that can occur during in vitro cultivation of human cells and can be accompanied by the accumulation of mutations in coding region sequences. We describe here a systematic application of current molecular technologies to provide a detailed understanding of genomic and sequence profiles of human embryonic stem cell (hESC) lines that were derived under GMP-compliant conditions. We first examined the overall chromosomal integrity using cytogenetic techniques to determine chromosome count,and to detect the presence of cytogenetically aberrant cells in the culture (mosaicism). Assays of copy number variation,using both microarray and sequence-based analyses,provide a detailed view genomic variation in these lines and shows that in early passage cultures of these lines,the size range and distribution of CNVs are entirely consistent with those seen in the genomes of normal individuals. Similarly,genome sequencing shows variation within these lines that is completely within the range seen in normal genomes. Important gene classes,such as tumor suppressors and genetic disease genes,do not display overtly disruptive mutations that could affect the overall safety of cell-based therapeutics. Complete sequence also allows the analysis of important transplantation antigens,such as ABO and HLA types. The combined application of cytogenetic and molecular technologies provides a detailed understanding of genomic and sequence profiles of GMP produced ES lines for potential use as therapeutic agents.
View Publication
Reference
Ahfeldt T et al. (FEB 2012)
Nature cell biology 14 1476-4679 (Electronic) 209--219
Programming human pluripotent stem cells into white and brown adipocytes.
The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%-90%. These adipocytes retained their identity independent of transgene expression,could be maintained in culture for several weeks,expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice,the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease
View Publication
Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming.
Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes,both in vitro and in vivo. Beyond uses in cell replacement therapy,patient-specific cardiomyocytes may find applications in drug testing,drug discovery,and disease modeling. Recently,approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs),adult heart-derived cardiac progenitor cells (CPCs),and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts,highlighting potential applications and future challenges.
View Publication
Reference
Liu L et al. (JAN 2012)
Biochemical and biophysical research communications 417 2 738--43
ER stress response during the differentiation of H9 cells induced by retinoic acid.
Endoplasmic reticulum (ER) stress occurs during early embryonic development. The aim of this study is to determine whether ER stress occurs during human embryonic stem cell differentiation induced by retinoic acid (RA). H9 human embryonic stem cells were subjected to RA treatment for up to 29. days to induce differentiation. HEK293 cells were treated with RA as a control. The results demonstrate that several ER stress-responsive genes are differentially regulated in H9 and HEK293 cells in response to 5. days of RA treatment. GRP78/Bip was upregulated in H9 cells but downregulated in HEK293 cells. eIF2?? was downregulated in H9 cells but not in HEK293 cells. Phosphorylation of eIF2?? was downregulated in H9 cells but upregulated in HEK293 cells. XBP-1 was downregulated immediately after RA treatment in H9 cells,but its downregulation was much slower in HEK293 cells. Additionally,two ER-resident E3 ubiquitin ligases,gp78 and Hrd1,were both upregulated in H9 cells following 5. days of exposure to RA. Moreover,the protein Bcl2 was undetectable in H9 cells and H9-derived cells but was expressed in HEK293 cells,and it expression in the two types of cells was unaltered by RA treatment. In H9 cells treated with RA for 29. days,GRP78/Bip,XBP-1 and Bcl2 were all upregulated. These results suggest that ER stress is involved in H9 cell differentiation induced by RA. ?? 2011 Elsevier Inc.
View Publication
Reference
Lu HF et al. (MAR 2012)
Biomaterials 33 8 2419--30
A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions.
Realizing the potential of human pluripotent stem cell (hPSC)-based therapy requires the development of defined scalable culture systems with efficient expansion,differentiation and isolation protocols. We report an engineered 3D microfiber system that efficiently supports long-term hPSCs self-renewal under chemically defined conditions. The unique feature of this system lies in the application of a 3D ECM-like environment in which cells are embedded,that affords: (i) uniform high cell loading density in individual cell-laden constructs (∼10 7 cells/ml); (ii) quick recovery of encapsulated cells (textless10min at 37°C) with excellent preservation of cell viability and 3D multicellular structure; (iii) direct cryopreservation of the encapsulated cells in situ in the microfibers with textgreater17-fold higher cell viability compared to those cultured on Matrigel surface; (iv) long-term hPSC propagation under chemically defined conditions. Four hPSC lines propagated in the microfibrous scaffold for 10 consecutive passages were capable of maintaining an undifferentiated phenotype as demonstrated by the expression of stem cell markers and stable karyotype invitro and the ability to form derivatives of the three germ layers both invitro and invivo. Our 3D microfibrous system has the potential for large-scale cultivation of transplantable hESCs and derivatives for clinical applications. textcopyright 2011 Elsevier Ltd.
View Publication
Reference
Cardoso SC et al. (JAN 2011)
PLoS ONE 6 12 e29244
Synchrotron radiation X-ray microfluorescence reveals polarized distribution of atomic elements during differentiation of pluripotent stem cells.
The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work,we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB) derived from embryonic and induced pluripotent stem (ES and iPS) cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed,indicating that neural differentiation and elemental polarization are strongly correlated.
View Publication
Reference
Schinzel RT et al. (JAN 2011)
PloS one 6 12 e27495
Efficient culturing and genetic manipulation of human pluripotent stem cells.
Human pluripotent stem cells (hPSC) hold great promise as models for understanding disease and as a source of cells for transplantation therapies. However,the lack of simple,robust and efficient culture methods remains a significant obstacle for realizing the utility of hPSCs. Here we describe a platform for the culture of hPSCs that 1) allows for dissociation and replating of single cells,2) significantly increases viability and replating efficiency,3) improves freeze/thaw viability 4) improves cloning efficiency and 5) colony size variation. When combined with standard methodologies for genetic manipulation,we found that the enhanced culture platform allowed for lentiviral transduction rates of up to 95% and electroporation efficiencies of up to 25%,with a significant increase in the total number of antibiotic-selected colonies for screening for homologous recombination. We further demonstrated the utility of the enhanced culture platform by successfully targeting the ISL1 locus. We conclude that many of the difficulties associated with culturing and genetic manipulation of hPSCs can be addressed with optimized culture conditions,and we suggest that the use of the enhanced culture platform could greatly improve the ease of handling and general utility of hPSCs.
View Publication
Reference
Ng S-Y et al. (FEB 2012)
The EMBO journal 31 3 522--33
Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors.
Long non-coding RNAs (lncRNAs) are a numerous class of newly discovered genes in the human genome,which have been proposed to be key regulators of biological processes,including stem cell pluripotency and neurogenesis. However,at present very little functional characterization of lncRNAs in human differentiation has been carried out. In the present study,we address this using human embryonic stem cells (hESCs) as a paradigm for pluripotency and neuronal differentiation. With a newly developed method,hESCs were robustly and efficiently differentiated into neurons,and we profiled the expression of thousands of lncRNAs using a custom-designed microarray. Some hESC-specific lncRNAs involved in pluripotency maintenance were identified,and shown to physically interact with SOX2,and PRC2 complex component,SUZ12. Using a similar approach,we identified lncRNAs required for neurogenesis. Knockdown studies indicated that loss of any of these lncRNAs blocked neurogenesis,and immunoprecipitation studies revealed physical association with REST and SUZ12. This study indicates that lncRNAs are important regulators of pluripotency and neurogenesis,and represents important evidence for an indispensable role of lncRNAs in human brain development.
View Publication
Reference
Carpenter L et al. (APR 2012)
Stem cells and development 21 6 977--86
Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat.
Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers,and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein,we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer,which routinely yielded a mixed population in which over 50% were cardiomyocytes,endothelium,or smooth muscle cells. When differentiating,cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion,we were able to show that human iPS cell-derived cardiac progenitor cells engrafted,differentiated into cardiomyocytes and smooth muscle,and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction,as assessed by magnetic resonance imaging at 10 weeks,such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%,compared to that of control infarcted hearts at 45%±9% (Ptextless0.2). In conclusion,we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart,and reduced remodeling of the heart after ischemic damage.
View Publication
Reference
Azarin SM et al. (MAR 2012)
Biomaterials 33 7 2041--2049
Modulation of Wnt/β-catenin signaling in human embryonic stem cells using a 3-D microwell array.
Intercellular interactions in the cell microenvironment play a critical role in determining cell fate,but the effects of these interactions on pathways governing human embryonic stem cell (hESC) behavior have not been fully elucidated. We and others have previously reported that 3-D culture of hESCs affects cell fates,including self-renewal and differentiation to a variety of lineages. Here we have used a microwell culture system that produces 3-D colonies of uniform size and shape to provide insight into the effect of modulating cell-cell contact on canonical Wnt/??-catenin signaling in hESCs. Canonical Wnt signaling has been implicated in both self-renewal and differentiation of hESCs,and competition for ??-catenin between the Wnt pathway and cadherin-mediated cell-cell interactions impacts various developmental processes,including the epithelial-mesenchymal transition. Our results showed that hESCs cultured in 3-D microwells exhibited higher E-cadherin expression than cells on 2-D substrates. The increase in E-cadherin expression in microwells was accompanied by a downregulation of Wnt signaling,as evidenced by the lack of nuclear ??-catenin and downregulation of Wnt target genes. Despite this reduction in Wnt signaling in microwell cultures,embryoid bodies (EBs) formed from hESCs cultured in microwells exhibited higher levels of Wnt signaling than EBs from hESCs cultured on 2-D substrates. Furthermore,the Wnt-positive cells within EBs showed upregulation of genes associated with cardiogenesis. These results demonstrate that modulation of intercellular interactions impacts Wnt/??-catenin signaling in hESCs. ?? 2011 Elsevier Ltd.
View Publication