Tan Y et al. (JAN 2012)
Journal of biomechanics 45 1 123--8
Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers.
Human embryonic stem cells (hESC) and hESC-derived cardiomyocytes (hESC-CM) hold great promise for the treatment of cardiovascular diseases. However the mechanobiological properties of hESC and hESC-CM remains elusive. In this paper,we examined the dynamic and static micromechanical properties of hESC and hESC-CM,by manipulating via optical tweezers at the single-cell level. Theoretical approaches were developed to model the dynamic and static mechanical responses of cells during optical stretching. Our experiments showed that the mechanical stiffness of differentiated hESC-CM increased after cardiac differentiation. Such stiffening could associate with increasingly organized myofibrillar assembly that underlines the functional characteristics of hESC-CM. In summary,our findings lay the ground work for using hESC-CMs as models to study mechanical and contractile defects in heart diseases.
View Publication
Reference
Ohmine S et al. (JAN 2011)
Stem Cell Research & Therapy 2 6 46
Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells
INTRODUCTION: The induced pluripotent stem cell (iPSC) technology allows generation of patient-specific pluripotent stem cells,thereby providing a novel cell-therapy platform for severe degenerative diseases. One of the key issues for clinical-grade iPSC derivation is the accessibility of donor cells used for reprogramming. METHODS: We examined the feasibility of reprogramming mobilized GMP-grade hematopoietic progenitor cells (HPCs) and peripheral blood mononuclear cells (PBMCs) and tested the pluripotency of derived iPS clones. RESULTS: Ectopic expression of OCT4,SOX2,KLF4,and c-MYC in HPCs and PBMCs resulted in rapid iPSC derivation. Long-term time-lapse imaging revealed efficient iPSC growth under serum- and feeder-free conditions with frequent mitotic events. HPC- and PBMC-derived iPS cells expressed pluripotency-associated markers,including SSEA-4,TRA-1-60,and NANOG. The global gene-expression profiles demonstrated the induction of endogenous pluripotent genes,such as LIN28,TERT,DPPA4,and PODXL,in derived iPSCs. iPSC clones from blood and other cell sources showed similar ultrastructural morphologies and genome-wide gene-expression profiles. On spontaneous and guided differentiation,HPC- and PBMC-derived iPSCs were differentiated into cells of three germ layers,including insulin-producing cells through endodermal lineage,verifying the pluripotency of the blood-derived iPSC clones. CONCLUSIONS: Because the use of blood cells allows minimally invasive tissue procurement under GMP conditions and rapid cellular reprogramming,mobilized HPCs and unmobilized PBMCs would be ideal somatic cell sources for clinical-grade iPSC derivation,especially from diabetes patients complicated by slow-healing wounds.
View Publication
Reference
Awasthi S et al. (JAN 2012)
Journal of biophotonics 5 1 57--66
Label-free identification and characterization of human pluripotent stem cell-derived cardiomyocytes using second harmonic generation (SHG) microscopy
Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) are a potentially unlimited source of cardiomyocytes (CMs) for cardiac transplantation therapies. The establishment of pure PSC-CM populations is important for this application,but is hampered by a lack of CM-specific surface markers suitable for their identification and sorting. Contemporary purification techniques are either non-specific or require genetic modification. We report a second harmonic generation (SHG) signal detectable in PSC-CMs that is attributable to sarcomeric myosin,dependent on PSC-CM maturity,and retained while PSC-CMs are in suspension. Our study demonstrates the feasibility of developing a SHG-activated flow cytometer for the non-invasive purification of PSC-CMs.
View Publication
Generating human intestinal tissue from pluripotent stem cells in vitro.
Here we describe a protocol for generating 3D human intestinal tissues (called organoids) in vitro from human pluripotent stem cells (hPSCs). To generate intestinal organoids,pluripotent stem cells are first differentiated into FOXA2(+)SOX17(+) endoderm by treating the cells with activin A for 3 d. After endoderm induction,the pluripotent stem cells are patterned into CDX2(+) mid- and hindgut tissue using FGF4 and WNT3a. During this patterning step,3D mid- or hindgut spheroids bud from the monolayer epithelium attached to the tissue culture dish. The 3D spheroids are further cultured in Matrigel along with prointestinal growth factors,and they proliferate and expand over 1-3 months to give rise to intestinal tissue,complete with intestinal mesenchyme and epithelium comprising all of the major intestinal cell types. To date,this is the only method for efficiently directing the differentiation of hPSCs into 3D human intestinal tissue in vitro.
View Publication
Reference
Philonenko ES et al. (JAN 2011)
International review of cell and molecular biology 292 153--96
Current progress and potential practical application for human pluripotent stem cells.
Pluripotent stem cells are able to give rise to all cell types of the organism. There are two sources for human pluripotent stem cells: embryonic stem cells (ESCs) derived from surplus blastocysts created for in vitro fertilization and induced pluripotent stem cells (iPSCs) generated by reprogramming of somatic cells. ESCs have been an area of intense research during the past decade,and two clinical trials have been recently approved. iPSCs were created only recently,and most of the research has been focused on the iPSC generation protocols and investigation of mechanisms of direct reprogramming. The iPSC technology makes possible to derive pluripotent stem cells from any patient. However,there are a number of hurdles to be overcome before iPSCs will find a niche in practice. In this review,we discuss differences and similarities of the two pluripotent cell types and assess prospects for application of these cells in biomedicine.
View Publication
Reference
Saha K et al. (NOV 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 46 18714--9
Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions
The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here,we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells,as predicted from a numerical model of cell migration,and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further,reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.
View Publication
Reference
Panopoulos AD et al. (JAN 2012)
Cell Research 22 1 168--177
The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs) remains largely unexplored. Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration. Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency. Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies. We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming. Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.
View Publication
Reference
Sood a et al. (DEC 2011)
Nature nanotechnology 6 12 824--33
Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness.
The use of nanoparticles in medicine is ever increasing,and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here,we show that this indirect DNA damage depends on the thickness of the cellular barrier,and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling,including cytokine release,occurred only across bilayer and multilayer barriers,but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers,our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.
View Publication
Reference
Babiarz JE et al. (JUL 2012)
Stem cells and development 21 11 1956--1965
Determination of the human cardiomyocyte mRNA and miRNA differentiation network by fine-scale profiling.
To gain insight into the molecular regulation of human heart development,a detailed comparison of the mRNA and miRNA transcriptomes across differentiating human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and biopsies from fetal,adult,and hypertensive human hearts was performed. Gene ontology analysis of the mRNA expression levels of the hiPSCs differentiating into cardiomyocytes revealed 3 distinct groups of genes: pluripotent specific,transitional cardiac specification,and mature cardiomyocyte specific. Hierarchical clustering of the mRNA data revealed that the transcriptome of hiPSC cardiomyocytes largely stabilizes 20 days after initiation of differentiation. Nevertheless,analysis of cells continuously cultured for 120 days indicated that the cardiomyocytes continued to mature toward a more adult-like gene expression pattern. Analysis of cardiomyocyte-specific miRNAs (miR-1,miR-133a/b,and miR-208a/b) revealed an miRNA pattern indicative of stem cell to cardiomyocyte specification. A biostatistitical approach integrated the miRNA and mRNA expression profiles revealing a cardiomyocyte differentiation miRNA network and identified putative mRNAs targeted by multiple miRNAs. Together,these data reveal the miRNA network in human heart development and support the notion that overlapping miRNA networks re-enforce transcriptional control during developmental specification.
View Publication
Reference
Stockmann M et al. (AUG 2013)
Stem Cell Reviews and Reports 9 4 475--492
Developmental and Functional Nature of Human iPSC Derived Motoneurons
West FD et al. (OCT 2011)
Stem Cells 29 10 1640--1643
Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs.
The recent development of porcine induced pluripotent stem cells (piPSCs) capable of generating chimeric animals,a feat not previously accomplished with embryonic stem cells or iPSCs in a species outside of rodents,has opened the doors for in-depth study of iPSC tumorigenicity,autologous transplantation,and other key aspects to safely move iPSC therapies to the clinic. The study of iPSC tumorigenicity is critical as previous research in the mouse showed that iPSC-derived chimeras possessed large numbers of tumors,rising significant concerns about the safety of iPSC therapies. Additionally,piPSCs capable of generating germline chimeras could revolutionize the transgenic animal field by enabling complex genetic manipulations (e.g.,knockout or knockin of genes) to produce biomedically important large animal models or improve livestock production. In this study,we demonstrate for the first time in a nonrodent species germline transmission of iPSCs with the live birth of a transgenic piglet that possessed genome integration of the human POU5F1 and NANOG genes. In addition,gross and histological examination of necropsied porcine chimeras at 2,7,and 9 months showed that these animals lacked tumor formation and demonstrated normal development. Tissue samples positive for human POU5F1 DNA showed no C-MYC gene expression,further implicating C-MYC as a cause of tumorigenicity. The development of germline-competent porcine iPSCs that do not produce tumors in young chimeric animals presents an attractive and powerful translational model to study the efficacy and safety of stem cell therapies and perhaps to efficiently produce complex transgenic animals.
View Publication
Reference
Iacovino M et al. (OCT 2011)
Stem Cells 29 10 1580--1587
Inducible cassette exchange: A rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells
Genetic modification is critically enabling for studies addressing specification and maintenance of cell fate; however,methods for engineering modifications are inefficient. We demonstrate a rapid and efficient recombination system in which an inducible,floxed cre allele replaces itself with an incoming transgene. We target this inducible cassette exchange (ICE) allele to the (HPRT) locus and demonstrate recombination in murine embryonic stem cells (ESCs) and primary cells from derivative ICE mice. Using lentivectors,we demonstrate recombination at a randomly integrated ICE locus in human ESCs. To illustrate the utility of this system,we insert the myogenic regulator,Myf5,into the ICE locus in each platform. This enables efficient directed differentiation of mouse and human ESCs into skeletal muscle and conditional myogenic transdetermination of primary cells cultured in vitro. This versatile tool is thus well suited to gain-of-function studies probing gene function in the specification and reprogramming of cell fate.
View Publication