Hwang Y et al. (JUL 2011)
Regenerative medicine 6 4 505--24
Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells.
Stem cells hold great promise for therapies aimed at regenerating damaged tissue,drug screening and studying in vitro models of human disease. However,many challenges remain before these applications can become a reality. One such challenge is developing chemically defined and scalable culture conditions for derivation and expansion of clinically viable human pluripotent stem cells,as well as controlling their differentiation with high specificity. Interaction of stem cells with their extracellular microenvironment plays an important role in determining their differentiation commitment and functions. Regenerative medicine approaches integrating cell-matrix and cell-cell interactions,and soluble factors could lead to development of robust microenvironments to control various cellular responses. Indeed,several of these recent developments have provided significant insight into the design of microenvironments that can elicit the targeted cellular response. In this article,we will focus on some of these developments with an emphasis on matrix-mediated expansion of human pluripotent stem cells while maintaining their pluripotency. We will also discuss the role of matrix-based cues and cell-cell interactions in the form of soluble signals in directing stem cell differentiation into musculoskeletal lineages.
View Publication
Reference
Ruzov A et al. (SEP 2011)
Cell Res 21 9 1332--42
Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development
Methylation of cytosine is a DNA modification associated with gene repression. Recently,a novel cytosine modification,5-hydroxymethylcytosine (5-hmC) has been discovered. Here we examine 5-hmC distribution during mammalian development and in cellular systems,and show that the developmental dynamics of 5-hmC are different from those of 5-methylcytosine (5-mC); in particular 5-hmC is enriched in embryonic contexts compared to adult tissues. A detectable 5-hmC signal appears in pre-implantation development starting at the zygote stage,where the paternal genome is subjected to a genome-wide hydroxylation of 5-mC,which precisely coincides with the loss of the 5-mC signal in the paternal pronucleus. Levels of 5-hmC are high in cells of the inner cell mass in blastocysts,and the modification colocalises with nestin-expressing cell populations in mouse post-implantation embryos. Compared to other adult mammalian organs,5-hmC is strongly enriched in bone marrow and brain,wherein high 5-hmC content is a feature of both neuronal progenitors and post-mitotic neurons. We show that high levels of 5-hmC are not only present in mouse and human embryonic stem cells (ESCs) and lost during differentiation,as has been reported previously,but also reappear during the generation of induced pluripotent stem cells; thus 5-hmC enrichment correlates with a pluripotent cell state. Our findings suggest that apart from the cells of neuronal lineages,high levels of genomic 5-hmC are an epigenetic feature of embryonic cell populations and cellular pluri- and multi-lineage potency. To our knowledge,5-hmC represents the first epigenetic modification of DNA discovered whose enrichment is so cell-type specific.
View Publication
Reference
Titmarsh D et al. (DEC 2011)
Biotechnology and Bioengineering 108 12 2894--2904
Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors.
Microfluidic systems create significant opportunities to establish highly controlled microenvironmental conditions for screening pluripotent stem cell fate. However,since cell fate is crucially dependent on this microenvironment,it remains unclear as to whether continual perfusion of culture medium supports pluripotent stem cell maintenance in feeder-free,chemically defined conditions,and further,whether optimum perfusion conditions exist for subsequent use of human embryonic stem cell (hESCs) in other microfludic systems. To investigate this,we designed microbioreactors based on resistive flow to screen hESCs under a linear range of flowrates. We report that at low rates (conditions where glucose transport is convection-limited with Péclet number textless1),cells are affected by apparent nutrient depletion and waste accumulation,evidenced by reduced cell expansion and altered morphology. At higher rates,cells are spontaneously washed out,and display morphological changes which may be indicative of early-stage differentiation. However,between these thresholds exists a narrow range of flowrates in which hESCs expand comparably to the equivalent static culture system,with regular morphology and maintenance of the pluripotency marker TG30 in textgreater95% of cells over 7 days. For MEL1 hESCs the optimum flowrate also coincided with the time-averaged medium exchange rate in static cultures,which may therefore provide a good first estimate of appropriate perfusion rates. Overall,we demonstrate hESCs can be maintained in microbioreactors under continual flow for up to 7 days,a critical outcome for the future development of microbioreactor-based screening systems and assays for hESC culture.
View Publication
Cell-based therapies have generated great interest in the scientific and medical communities,and stem cells in particular are very appealing for regenerative medicine,drug screening and other biomedical applications. These unspecialized cells have unlimited self-renewal capacity and the remarkable ability to produce mature cells with specialized functions,such as blood cells,nerve cells or cardiac muscle. However,the actual number of cells that can be obtained from available donors is very low. One possible solution for the generation of relevant numbers of cells for several applications is to scale-up the culture of these cells in vitro. This review describes recent developments in the cultivation of stem cells in bioreactors,particularly considerations regarding critical culture parameters,possible bioreactor configurations,and integration of novel technologies in the bioprocess development stage. We expect that this review will provide updated and detailed information focusing on the systematic production of stem cell products in compliance with regulatory guidelines,while using robust and cost-effective approaches.
View Publication
Reference
Escobedo-Lucea C et al. (MAR 2012)
Stem Cell Reviews and Reports 8 1 170--183
Development of a human extracellular matrix for applications related with stem cells and tissue engineering.
Konorov SO et al. (AUG 2011)
Analytical chemistry 83 16 6254--6258
Absolute quantification of intracellular glycogen content in human embryonic stem cells with Raman microspectroscopy
We present a method to perform absolute quantification of glycogen in human embryonic stem cells (hESCs) in situ based on the use of Raman microspectroscopy. The proposed quantification method was validated by comparison to a commonly used commercial glycogen assay kit. With Raman microspectroscopy,we could obtain the glycogen content of hESCs faster and apparently more accurately than with the kit. In addition,glycogen distributions across a colony could be obtained. Raman spectroscopy can provide reliable estimates of the in situ glycogen content in hESCs,and this approach should also be extensible to their other biochemical constituents as well as to other cell types.
View Publication
Reference
Linta L et al. (APR 2012)
Stem cells and development 21 6 965--976
Rat Embryonic Fibroblasts Improve Reprogramming of Human Keratinocytes into Induced Pluripotent Stem Cells
Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general,but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies,however,is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is,however,limited and thereby further optimization in terms of time,efficiency,and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts,at least in part,in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1,Inhba and Grem1. Hence,we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells.
View Publication
Reference
Varum S et al. (JUN 2011)
PLoS ONE 6 6 e20914
Energy metabolism in human pluripotent stem cells and their differentiated counterparts.
BACKGROUND: Human pluripotent stem cells have the ability to generate all cell types present in the adult organism,therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly,many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines,namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells.backslashnbackslashnMETHODOLOGY/PRINCIPAL FINDINGS: We compared the energy metabolism of hESCs,IPSCs,and their somatic counterparts. Focusing on mitochondria,we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism,including glycolysis,the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer,as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism.backslashnbackslashnCONCLUSIONS/FINDINGS: Our results demonstrate that,although the metabolic signature of IPSCs is not identical to that of hESCs,nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels,lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore,our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates,such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH).
View Publication
Reference
Dixon JE et al. (SEP 2011)
Molecular therapy : the journal of the American Society of Gene Therapy 19 9 1695--703
Directed differentiation of human embryonic stem cells to interrogate the cardiac gene regulatory network.
The limited ability of the heart to regenerate has prompted development of new systems to produce cardiomyocytes for therapeutics. While differentiation of human embryonic stem cells (hESCs) into cardiomyocytes has been well documented,the process remains inefficient and/or expensive,and progress would be facilitated by better understanding the early genetic events that cause cardiac specification. By maintaining a transgenic cardiac-specific MYH6-monomeric red fluorescent protein (mRFP) reporter hESC line in conditions that promote pluripotency,we tested the ability of combinations of 15 genes to induce cardiac specification. Screening identified GATA4 plus TBX5 as the minimum requirement to activate the cardiac gene regulatory network and produce mRFP(+) cells,while a combination of GATA4,TBX5,NKX2.5,and BAF60c (GTNB) was necessary to generate beating cardiomyocytes positive for cTnI and α-actinin. Including the chemotherapeutic agent,Ara-C,from day 10 of induced differentiation enriched for cTnI/α-actinin double positive cells to 45%. Transient expression of GTNB for 5-7 days was necessary to activate the cardiogenesis through progenitor intermediates in a manner consistent with normal heart development. This system provides a route to test the effect of different factors on human cardiac differentiation and will be useful in understanding the network failures that underlie disease phenotypes.
View Publication
Retinoblastoma-binding proteins 4 and 9 are important for human pluripotent stem cell maintenance.
OBJECTIVE: The molecular mechanisms that maintain human pluripotent stem (PS) cells are not completely understood. Here we sought to identify new candidate PS cell regulators to facilitate future improvements in their generation,expansion,and differentiation. MATERIALS AND METHODS: We used bioinformatic analyses of multiple serial-analysis-of-gene-expression libraries (generated from human PS cells and their differentiated derivatives),together with small interfering RNA (siRNA) screening to identify candidate pluripotency regulators. Validation of candidate regulators involved promoter analyses,Affymetrix profiling,real-time PCR,and immunoprecipitation. RESULTS: Promoter analysis of genes differentially expressed across multiple serial-analysis-of-gene-expression libraries identified E2F motifs in the promoters of many PS cell-specific genes (e.g.,POU5F1,NANOG,SOX2,FOXD3). siRNA analyses identified two retinoblastoma binding proteins (RBBP4,RBBP9) as required for maintenance of multiple human PS cell types. Both RBBPs were bound to RB in human PS cells,and E2F motifs were present in the promoters of genes whose expression was altered by decreasing RBBP4 and RBBP9 expression. Affymetrix and real-time PCR studies of siRNA-treated human PS cells showed that reduced RBBP4 or RBBP9 expression concomitantly decreased expression of POU5F1,NANOG,SOX2,and/or FOXD3 plus certain cell cycle genes (e.g.,CCNA2,CCNB1),while increasing expression of genes involved in organogenesis (particularly neurogenesis). CONCLUSIONS: These results reveal new candidate positive regulators of human PS cells,providing evidence of their ability to regulate expression of pluripotency,cell cycle,and differentiation genes in human PS cells. These data provide valuable new leads for further elucidating mechanisms of human pluripotency.
View Publication
Reference
Bogomazova AN et al. (JUN 2011)
Aging 3 6 584--596
Error-prone nonhomologous end joining repair operates in human pluripotent stem cells during late G2.
Genome stability of human embryonic stem cells (hESC) is an important issue because even minor genetic alterations can negatively impact cell functionality and safety. The incorrect repair of DNA double-stranded breaks (DSBs) is the ultimate cause of the formation of chromosomal aberrations. Using G2 radiosensitivity assay,we analyzed chromosomal aberrations in pluripotent stem cells and somatic cells. The chromatid exchange aberration rates in hESCs increased manifold 2 hours after irradiation as compared with their differentiated derivatives,but the frequency of radiation-induced chromatid breaks was similar. The rate of radiation-induced chromatid exchanges in hESCs and differentiated cells exhibited a quadratic dose response,revealing two-hit mechanism of exchange formation suggesting that a non-homologous end joining (NHEJ) repair may contribute to their formation. Inhibition of DNA-PK,a key NHEJ component,by NU7026 resulted in a significant decrease in radiation-induced chromatid exchanges in hESCs but not in somatic cells. In contrast,NU7026 treatment increased the frequency of radiation-induced breaks to a similar extent in pluripotent and somatic cells. Thus,DNA-PK dependent NHEJ efficiently participates in the elimination of radiation-induced chromatid breaks during the late G2 in both cell types and DNA-PK activity leads to a high level of misrejoining specifically in pluripotent cells.
View Publication
Reference
Ramachandra CJA et al. (SEP 2011)
Nucleic Acids Research 39 16 e107
Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors
Insertion of a transgene into a defined genomic locus in human embryonic stem cells (hESCs) is crucial in preventing random integration-induced insertional mutagenesis,and can possibly enable persistent transgene expression during hESC expansion and in their differentiated progenies. Here,we employed homologous recombination in hESCs to introduce heterospecific loxP sites into the AAVS1 locus,a site with an open chromatin structure that allows averting transgene silencing phenomena. We then performed Cre recombinase mediated cassette exchange using baculoviral vectors to insert a transgene into the modified AAVS1 locus. Targeting efficiency in the master hESC line with the loxP-docking sites was up to 100%. Expression of the inserted transgene lasted for at least 20 passages during hESC expansion and was retained in differentiated cells derived from the genetically modified hESCs. Thus,this study demonstrates the feasibility of genetic manipulation at the AAVS1 locus with homologous recombination and using viral transduction in hESCs to facilitate recombinase-mediated cassette exchange. The method developed will be useful for repeated gene targeting at a defined locus of the hESC genome.
View Publication