Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However,G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors,precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently,new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice,we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF,implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment,genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42),and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes.
View Publication
Reference
Rizzino A (SEP 2010)
Regenerative medicine 5 5 799--807
Stimulating progress in regenerative medicine: improving the cloning and recovery of cryopreserved human pluripotent stem cells with ROCK inhibitors.
Until recently,culturing human pluripotent stem cells was hampered by three prominent technical problems: a high degree of unwanted cellular stress when the cells are passaged,unacceptably low cloning efficiency and poor recovery of cryopreserved stocks. This review discusses recent developments that address these problems. A major focus of the review is the use of p160 Rho-associated coiled-coil kinase inhibitors for improving both the cloning efficiency and the recovery of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. An underlying theme of this review is that the three problems have a common cause: separation of human pluripotent stem cells from one another increases cellular stress,which greatly decreases their viability unless special steps are taken.
View Publication
Reference
Norrman K et al. (JAN 2010)
PLoS ONE 5 8 e12413
Quantitative comparison of constitutive promoters in human ES cells.
BACKGROUND: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications,including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have quantitatively compared promoter activities of five commonly used constitutive promoters,including the human β-actin promoter (ACTB),cytomegalovirus (CMV),elongation factor-1α,(EF1α),phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. CONCLUSION/SIGNIFICANCE: The ACTB,EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75-80% of the cells after 50 days in culture. During embryoid body (EB) differentiation,promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells,it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages,suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs.
View Publication
Reference
Bratt-Leal A et al. (JAN 2011)
Biomaterials 32 1 48--56
Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation.
Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date,stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments,such as 2D cell culture on biomaterial surfaces,encapsulation of cell suspensions within hydrogel materials,or cell seeding on 3D polymeric scaffolds. In this study,microparticles fabricated from different materials,such as agarose,PLGA and gelatin,were stably integrated,in a dose-dependent manner,within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly,the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors,extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition,these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation,but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes.
View Publication
Reference
Lai W-H et al. (DEC 2010)
Cellular reprogramming 12 6 641--653
ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system.
Human-induced pluripotent stem cells (iPSCs) generated from human adult somatic cells through reprogramming hold great promises for future regenerative medicine. However,exposure of human iPSCs to animal feeder and serum in the process of their generation and maintenance imposes risk of transmitting animal pathogens to human subjects,thus hindering the potential therapeutic applications. Here,we report the successful generation of human iPSCs in a feeder-independent culture system with defined factors. Two stable human iPSC lines were established from primary human dermal fibroblasts of two healthy volunteers. These human iPSCs expressed a panel of pluripotency markers including stage-specific embryonic antigen (SSEA)-4,tumor-rejection antigen (TRA)-1-60,TRA-1-81,and alkaline phosphatase,while maintaining normal karyotypes and the exogenous reprogramming factors being silenced. In addition,these human iPSCs can differentiate along lineages representative of the three embryonic germ layers upon formation of embryoid bodies,indicating their pluripotency. Furthermore,subcutaneous transplantation of these cells into immunodeficient mice resulted in teratoma formation in 6 to 8 weeks. Our findings are an important step toward generating patient-specific iPSCs in a more clinically compliant manner by eliminating the need of animal feeder cells and animal serum.
View Publication
Reference
Harris RA et al. (OCT 2010)
Nature biotechnology 28 10 1097--1105
Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS),and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage,resolution,cost,concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls,the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This,along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states,identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression.
View Publication
Reference
Walker A et al. (JAN 2010)
Nature communications 1 6 71
Non-muscle myosin II regulates survival threshold of pluripotent stem cells.
Human pluripotent stem (hPS) cells such as human embryonic stem (hES) and induced pluripotent stem (hiPS) cells are vulnerable under single cell conditions,which hampers practical applications; yet,the mechanisms underlying this cell death remain elusive. In this paper,we demonstrate that treatment with a specific inhibitor of non-muscle myosin II (NMII),blebbistatin,enhances the survival of hPS cells under clonal density and suspension conditions,and,in combination with a synthetic matrix,supports a fully defined environment for self-renewal. Consistent with this,genetically engineered mouse embryonic stem cells lacking an isoform of NMII heavy chain (NMHCII),or hES cells expressing a short hairpin RNA to knock down NMHCII,show greater viability than controls. Moreover,NMII inhibition increases the expression of self-renewal regulators Oct3/4 and Nanog,suggesting a mechanistic connection between NMII and self-renewal. These results underscore the importance of the molecular motor,NMII,as a novel target for chemically engineering the survival and self-renewal of hPS cells.
View Publication
Reference
Gallego MJ et al. (JAN 2010)
Stem cell research & therapy 1 4 28
The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes.
INTRODUCTION: The physiological signals that direct the division and differentiation of the zygote to form a blastocyst,and subsequent embryonic stem cell division and differentiation during early embryogenesis,are unknown. Although a number of growth factors,including the pregnancy-associated hormone human chorionic gonadotropin (hCG) are secreted by trophoblasts that lie adjacent to the embryoblast in the blastocyst,it is not known whether these growth factors directly signal human embryonic stem cells (hESCs).backslashnbackslashnMETHODS: Here we used hESCs as a model of inner cell mass differentiation to examine the hormonal requirements for the formation of embryoid bodies (EB's; akin to blastulation) and neuroectodermal rosettes (akin to neurulation).backslashnbackslashnRESULTS: We found that hCG promotes the division of hESCs and their differentiation into EB's and neuroectodermal rosettes. Inhibition of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) signaling suppresses hESC proliferation,an effect that is reversed by treatment with hCG. hCG treatment rapidly upregulates steroidogenic acute regulatory protein (StAR)-mediated cholesterol transport and the synthesis of progesterone (P4). hESCs express P4 receptor A,and treatment of hESC colonies with P4 induces neurulation,as demonstrated by the expression of nestin and the formation of columnar neuroectodermal cells that organize into neural tubelike rosettes. Suppression of P4 signaling by withdrawing P4 or treating with the P4-receptor antagonist RU-486 inhibits the differentiation of hESC colonies into EB's and rosettes.backslashnbackslashnCONCLUSIONS: Our findings indicate that hCG signaling via LHCGR on hESC promotes proliferation and differentiation during blastulation and neurulation. These findings suggest that trophoblastic hCG secretion and signaling to the adjacent embryoblast could be the commencement of trophic support by placental tissues in the growth and development of the human embryo.
View Publication
Reference
Fischer Y et al. (JAN 2010)
PLoS ONE 5 9 1--11
NANOG reporter cell lines generated by gene targeting in human embryonic stem cells
Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways,which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency,but the precise role and regulation of NANOG are not well defined.
View Publication
Reference
Hartung O et al. (AUG 2010)
Current protocols in stem cell biology Chapter 1 Unit 1C.10
Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells.
The ability of human embryonic stem cells (hESCs) to differentiate into essentially all somatic cell types has made them a valuable tool for studying human development and has positioned them for broad applications in toxicology,regenerative medicine,and drug discovery. This unit describes a protocol for the large-scale expansion and maintenance of hESCs in vitro. hESC cultures must maintain a balance between the cellular states of pluripotency and differentiation; thus,researchers must use care when growing these technically demanding cells. The culture system is based largely on the use of a proprietary serum-replacement product and basic fibroblast growth factor (bFGF),with mouse embryonic fibroblasts as a feeder layer. These conditions provide the basis for relatively inexpensive maintenance and expansion of hESCs,as well as their engineered counterparts,human induced pluripotent stem cells (hiPSCs).
View Publication
Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells
The introduction of double stranded RNA (dsRNA) into the cytoplasm of mammalian cells usually leads to a potent antiviral response resulting in the rapid induction of interferon beta (IFNβ). This response can be mediated by a number of dsRNA sensors,including TLR3,MDA5,RIG-I and PKR. We show here that pluripotent human cells (human embryonic stem (hES) cells and induced pluripotent (iPS) cells) do not induce interferon in response to cytoplasmic dsRNA,and we have used a variety of approaches to learn the underlying basis for this phenomenon. Two major cytoplasmic dsRNA sensors,TLR3 and MDA5,are not expressed in hES cells and iPS cells. PKR is expressed in hES cells,but is not activated by transfected dsRNA. In addition,RIG-I is expressed,but fails to respond to dsRNA because its signaling adapter,MITA/STING,is not expressed. Finally,the interferon-inducible RNAse L and oligoadenylate synthetase enzymes are also expressed at very low levels. Upon differentiation of hES cells into trophoblasts,cells acquire the ability to respond to dsRNA and this correlates with a significant induction of expression of TLR3 and its adaptor protein TICAM-1/TRIF. Taken together,our results reveal that the lack of an interferon response may be a general characteristic of pluripotency and that this results from the systematic downregulation of a number of genes involved in cytoplasmic dsRNA signaling.
View Publication
Reference
K. E. Hammerick et al. (feb 2011)
Tissue engineering. Part A 17 4-Mar 495--502
Elastic properties of induced pluripotent stem cells.
The recent technique of transducing key transcription factors into unipotent cells (fibroblasts) to generate pluripotent stem cells (induced pluripotent stem cells [iPSCs]) has significantly changed the stem cell field. These cells have great promise for many clinical applications,including that of regenerative medicine. Our findings show that iPSCs can be derived from human adipose-derived stromal cells (hASCs),a notable advancement in the clinical applicability of these cells. To investigate differences between two iPS cell lines (fibroblast-iPSC and hASC-iPSC),and also the gold standard human embryonic stem cell,we looked at cell stiffness as a possible indicator of cell differentiation-potential differences. We used atomic force microscopy as a tool to determine stem cell stiffness,and hence differences in material properties between cells. Human fibroblast and hASC stiffness was also ascertained for comparison. Interestingly,cells exhibited a noticeable difference in stiffness. From least to most stiff,the order of cell stiffness was as follows: hASC-iPSC,human embryonic stem cell,fibroblast-iPSC,fibroblasts,and,lastly,as the stiffest cell,hASC. In comparing hASC-iPSCs to their origin cell,the hASC,the reprogrammed cell is significantly less stiff,indicating that greater differentiation potentials may correlate with a lower cellular modulus. The stiffness differences are not dependent on cell culture density; hence,material differences between cells cannot be attributed solely to cell-cell constraints. The change in mechanical properties of the cells in response to reprogramming offers insight into how the cell interacts with its environment and might lend clues to how to efficiently reprogram cell populations as well as how to maintain their pluripotent state.
View Publication