Marchetto MCN et al. (JAN 2009)
PLoS ONE 4 9 e7076
Transcriptional signature and memory retention of human-induced pluripotent stem cells
Genetic reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells or iPSCs) by over-expression of specific genes has been accomplished using mouse and human cells. However,it is still unclear how similar human iPSCs are to human Embryonic Stem Cells (hESCs). Here,we describe the transcriptional profile of human iPSCs generated without viral vectors or genomic insertions,revealing that these cells are in general similar to hESCs but with significant differences. For the generation of human iPSCs without viral vectors or genomic insertions,pluripotent factors Oct4 and Nanog were cloned in episomal vectors and transfected into human fetal neural progenitor cells. The transient expression of these two factors,or from Oct4 alone,resulted in efficient generation of human iPSCs. The reprogramming strategy described here revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference. Moreover,the episomal reprogramming strategy represents a safe way to generate human iPSCs for clinical purposes and basic research.
View Publication
Reference
Braam SR et al. (OCT 2009)
Trends in pharmacological sciences 30 10 536--45
Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery.
Stem cells derived from pre-implantation human embryos or from somatic cells by reprogramming are pluripotent and self-renew indefinitely in culture. Pluripotent stem cells are unique in being able to differentiate to any cell type of the human body. Differentiation towards the cardiac lineage has attracted significant attention,initially with a strong focus on regenerative medicine. Although an important research area,the heart has proven challenging to repair by cardiomyocyte replacement. However,the ability to reprogramme adult cells to pluripotent stem cells and genetically manipulate stem cells presented opportunities to develop models of human disease. The availability of human cardiomyocytes from stem cell sources is expected to accelerate the discovery of cardiac drugs and safety pharmacology by offering more clinically relevant human culture models than presently available. Here we review the state-of-the-art using stem cell-derived human cardiomyocytes in drug discovery,drug safety pharmacology,and regenerative medicine.
View Publication
nAChRs mediate human embryonic stem cell-derived endothelial cells: proliferation, apoptosis, and angiogenesis.
BACKGROUND: Many patients with ischemic heart disease have cardiovascular risk factors such as cigarette smoking. We tested the effect of nicotine (a key component of cigarette smoking) on the therapeutic effects of human embryonic stem cell-derived endothelial cells (hESC-ECs).backslashnbackslashnMETHODS AND RESULTS: To induce endothelial cell differentiation,undifferentiated hESCs (H9 line) underwent 4-day floating EB formation and 8-day outgrowth differentiation in EGM-2 media. After 12 days,CD31(+) cells (13.7+/-2.5%) were sorted by FACScan and maintained in EGM-2 media for further differentiation. After isolation,these hESC-ECs expressed endothelial specific markers such as vWF (96.3+/-1.4%),CD31 (97.2+/-2.5%),and VE-cadherin (93.7+/-2.8%),form vascular-like channels,and incorporated DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL). Afterward,5x10(6) hESC-ECs treated for 24 hours with nicotine (10(-8) M) or PBS (as control) were injected into the hearts of mice undergoing LAD ligation followed by administration for two weeks of vehicle or nicotine (100 microg/ml) in the drinking water. Surprisingly,bioluminescence imaging (BLI) showed significant improvement in the survival of transplanted hESC-ECs in the nicotine treated group at 6 weeks. Postmortem analysis confirmed increased presence of small capillaries in the infarcted zones. Finally,in vitro mechanistic analysis suggests activation of the MAPK and Akt pathways following activation of nicotinic acetylcholine receptors (nAChRs).backslashnbackslashnCONCLUSIONS: This study shows for the first time that short-term systemic administrations of low dose nicotine can improve the survival of transplanted hESC-ECs,and enhance their angiogenic effects in vivo. Furthermore,activation of nAChRs has anti-apoptotic,angiogenic,and proliferative effects through MAPK and Akt signaling pathways.
View Publication
A novel role for ??-secretase in the formation of primitive streak-like intermediates from ES cells in culture
gamma-Secretase is a membrane-associated protease with multiple intracellular targets,a number of which have been shown to influence embryonic development and embryonic stem (ES) cell differentiation. This paper describes the use of the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) to evaluate the role of gamma-secretase in the differentiation of pluripotent stem cells to the germ lineages. The addition of DAPT did not prevent the formation of primitive ectoderm-like cells from ES cells in culture. In contrast,the addition of DAPT during primitive ectoderm-like cell differentiation interfered with the ability of both serum and BMP4 to induce a primitive streak-like intermediate and resulted in the preferential formation of neurectoderm. Similarly,DAPT reduced the formation of primitive streak-like intermediates from differentiating human ES cells; the culture conditions used resulted in a population enriched in human surface ectoderm. These data suggest that gamma-secretase may form part of the general pathway by which mesoderm is specified within the primitive streak. The addition of an E-cadherin neutralizing antibody was able to partially reverse the effect of DAPT,suggesting that DAPT may be preventing the formation of primitive streak-like intermediates and promoting neurectoderm differentiation by stabilizing E-cadherin and preventing its proteolysis.
View Publication
Reference
Krawetz R et al. (AUG 2010)
Tissue engineering. Part C,Methods 16 4 573--582
Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors.
Since the derivation of human embryonic stem (hES) cells,their translation to clinical therapies has been met with several challenges,including the need for large-scale expansion and controlled differentiation processes. Suspension bioreactors are an effective alternative to static culture flasks as they enable the generation of clinically relevant cell numbers with greater efficacy in a controlled culture system. We,along with other groups,have developed bioreactor protocols for the expansion of pluripotent murine ES cells. Here we present a novel bioreactor protocol that yields a 25-fold expansion of hES cells over 6 days. Using immunofluorescence,flow cytometry,and teratoma formation assays,we demonstrated that these bioreactor cultures retained high levels of pluripotency and a normal karyotype. Importantly,the use of bioreactors enables the expansion of hES cells in the absence of feeder layers or matrices,which will facilitate the adaptation of good manufacturing process (GMP) standards to the development of hES cell therapies.
View Publication
Reference
Mousa SA et al. (MAR 2010)
Cancer Letters 289 2 208--216
Stress resistant human embryonic stem cells as a potential source for the identification of novel cancer stem cell markers
Cancer stem cells are known for their inherent resistance to therapy. Here we investigated whether normal stem cells with acquired resistance to stress can be used to identify novel markers of cancer stem cells. For this,we generated a human embryonic stem cell line resistant to Trichostatin A and analyzed changes in its gene expression. The resistant cells over-expressed various genes associated with tumor aggressiveness,many of which are also expressed in the CD133+ glioma cancer stem cells. These findings suggest that stress-resistant stem cells generated in vitro may be useful for the discovery of novel markers of cancer stem cells.
View Publication
Reference
Chin ACP et al. (JUN 2010)
Stem cells and development 19 6 753--61
Defined and serum-free media support undifferentiated human embryonic stem cell growth.
Four commercially available serum-free and defined culture media tested on 2 human embryonic stem cell (hESC) lines were all found to support undifferentiated growth for textgreater10 continuous passages. For hESC cultured with defined StemPro and mTeSR1 media,the cells were maintained feeder-free on culture dishes coated with extracellular matrices (ECMs) with no requirement of feeder-conditioned media (CM). For xeno-free serum replacer (XSR),HEScGRO,and KnockOut media,mitotically inactivated human foreskin feeders (hFFs) were required for hESC growth. Under the different media conditions,cells continued to exhibit alkaline phosphatase activity and expressed undifferentiated hESC markers Oct-4,stage-specific embryonic antigens 4 (SSEA-4),and Tra-1-60. In addition,hESC maintained the expression of podocalyxin-like protein-1 (PODXL),an antigen recently reported in another study to be present in undifferentiated hESC. The cytotoxic antibody mAb 84 binds via PODXL expressed on hESC surface and kills textgreater90% of hESC within 45 min of incubation. When these cells were spontaneously differentiated to form embryoid bodies,derivatives representing the 3 germ layers were obtained. Injection of hESC into animal models resulted in teratomas and the formation of tissue types indicative of ectodermal,endodermal,and mesodermal lineages were observed. Our data also suggested that StemPro and mTeSR1 media were more optimal for hESC proliferation compared to cells grown on CM because the growth rate of hESC increased by 30%-40%,higher split ratio was thus required for weekly passaging. This is advantageous for the large-scale cultivation of hESC required in clinical applications.
View Publication
Reference
Hockemeyer D et al. (SEP 2009)
Nature biotechnology 27 9 851--7
Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases.
Realizing the full potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) requires efficient methods for genetic modification. However,techniques to generate cell type-specific lineage reporters,as well as reliable tools to disrupt,repair or overexpress genes by gene targeting,are inefficient at best and thus are not routinely used. Here we report the highly efficient targeting of three genes in human pluripotent cells using zinc-finger nuclease (ZFN)-mediated genome editing. First,using ZFNs specific for the OCT4 (POU5F1) locus,we generated OCT4-eGFP reporter cells to monitor the pluripotent state of hESCs. Second,we inserted a transgene into the AAVS1 locus to generate a robust drug-inducible overexpression system in hESCs. Finally,we targeted the PITX3 gene,demonstrating that ZFNs can be used to generate reporter cells by targeting non-expressed genes in hESCs and hiPSCs.
View Publication
Reference
Hui Z et al. (OCT 2009)
Stem Cells 27 10 2435--2445
Lack of ABCG2 expression and side population properties in human pluripotent stem cells
The multidrug transporter ABCG2 in cell membranes enables various stem cells and cancer cells to efflux chemicals,including the fluorescent dye Hoechst 33342. The Hoechst(-) cells can be sorted out as a side population with stem cell properties. Abcg2 expression in mouse embryonic stem cells (ESCs) reduces accumulation of DNA-damaging metabolites in the cells,which helps prevent cell differentiation. Surprisingly,we found that human ESCs do not express ABCG2 and cannot efflux Hoechst. In contrast,trophoblasts and neural epithelial cells derived from human ESCs are ABCG2(+) and Hoechst(-). Human ESCs ectopically expressing ABCG2 become Hoechst(-),more tolerant of toxicity of mitoxantrone,a substrate of ABCG2,and more capable of self-renewal in basic fibroblast growth factor (bFGF)-free condition than control cells. However,Hoechst(low) cells sorted as a small subpopulation from human ESCs express lower levels of pluripotency markers than the Hoechst(high) cells. Similar results were observed with human induced pluripotent stem cells. Conversely,mouse ESCs are Abcg2(+) and mouse trophoblasts,Abcg2(-). Thus,absence of ABCG2 is a novel feature of human pluripotent stem cells,which distinguishes them from many other stem cells including mouse ESCs,and may be a reason why they are sensitive to suboptimal culture conditions.
View Publication
Reference
Eminli S et al. (SEP 2009)
Nature genetics 41 9 968--76
Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells.
The reprogramming of somatic cells into induced pluripotent stem (iPS) cells upon overexpression of the transcription factors Oct4,Sox2,Klf4 and cMyc is inefficient. It has been assumed that the somatic differentiation state provides a barrier for efficient reprogramming; however,direct evidence for this notion is lacking. Here,we tested the potential of mouse hematopoietic cells at different stages of differentiation to be reprogrammed into iPS cells. We show that hematopoietic stem and progenitor cells give rise to iPS cells up to 300 times more efficiently than terminally differentiated B and T cells do,yielding reprogramming efficiencies of up to 28%. Our data provide evidence that the differentiation stage of the starting cell has a critical influence on the efficiency of reprogramming into iPS cells. Moreover,we identify hematopoietic progenitors as an attractive cell type for applications of iPS cell technology in research and therapy.
View Publication
Reference
Chung J et al. (AUG 2009)
Current protocols in stem cell biology Chapter 5 August Unit 5A.3
Magnetic resonance imaging of human embryonic stem cells.
Magnetic resonance imaging (MRI) may emerge as an ideal non-invasive imaging modality to monitor stem cell therapy in the failing heart. This imaging modality generates any arbitrary tomographic view at high spatial and temporal resolution with exquisite intrinsic tissue contrast. This capability enables robust evaluation of both the cardiac anatomy and function. Traditionally,superparamagnetic iron oxide nanoparticle (SPIO) has been widely used for cellular MRI due to SPIO's ability to enhance sensitivity of MRI by inducing remarkable hypointense,negative signal,blooming effect" on T2*-weighted MRI acquisition. Recently�
View Publication