Fuhrmann G et al. (MAY 2015)
Journal of controlled release : official journal of the Controlled Release Society 205 35--44
Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins
Extracellular vesicles (EVs) are phospholipid-based particles endogenously produced by cells. Their natural composition and selective cell interactions make them promising drug carriers. However,in order to harness their properties,efficient exogenous drug encapsulation methods need to be investigated. Here,EVs from various cellular origins (endothelial,cancer and stem cells) were produced and characterised for size and composition. Porphyrins of different hydrophobicities were employed as model drugs and encapsulated into EVs using various passive and active methods (electroporation,saponin,extrusion and dialysis). Hydrophobic compounds loaded very efficiently into EVs and at significantly higher amounts than into standard liposomes composed of phosphocholine and cholesterol using passive incubation. Moreover,loading into EVs significantly increased the cellular uptake by textgreater60% and the photodynamic effect of hydrophobic porphyrins in vitro compared to free or liposome encapsulated drug. The active encapsulation techniques,with the saponin-assisted method in particular,allowed an up to 11 fold higher drug loading of hydrophilic porphyrins compared to passive methods. EVs loaded with hydrophilic porphyrins induced a stronger phototoxic effect than free drug in a cancer cell model. Our findings create a firm basis for the development of EVs as smart drug carriers based on straightforward and transferable methods.
View Publication
Reference
Kallas A et al. (NOV 2014)
International Journal of Cell Biology 2014 280638
Assessment of the potential of CDK2 inhibitor NU6140 to influence the expression of pluripotency markers NANOG, OCT4, and SOX2 in 2102Ep and H9 cells
As cyclin-dependent kinases (CDKs) regulate cell cycle progression and RNA transcription,CDKs are attractive targets for creating cancer cell treatments. In this study we investigated the effects of the small molecular agent NU6140 (inhibits CDK2 and cyclin A interaction) on human embryonic stem (hES) cells and embryonal carcinoma-derived (hEC) cells via the expression of transcription factors responsible for pluripotency. A multiparameter flow cytometric method was used to follow changes in the expression of NANOG,OCT4,and SOX2 together in single cells. Both hES and hEC cells responded to NU6140 treatment by induced apoptosis and a decreased expression of NANOG,OCT4,and SOX2 in surviving cells. A higher sensitivity to NU6140 application in hES than hEC cells was detected. NU6140 treatment arrested hES and hEC cells in the G2 phase and inhibited entry into the M phase as evidenced by no significant increase in histone 3 phosphorylation. When embryoid bodies (EBs) formed from NU6104 treated hES cells were compared to EBs from untreated hES cells differences in ectodermal,endodermal,and mesodermal lineages were found. The results of this study highlight the importance of CDK2 activity in maintaining pluripotency of hES and hEC cells and in differentiation of hES cells.
View Publication
Reference
Schrenk-Siemens K et al. (JAN 2014)
Nature neuroscience 18 1 10--16
PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors.
Human sensory neurons are inaccessible for functional examination,and thus little is known about the mechanisms mediating touch sensation in humans. Here we demonstrate that the mechanosensitivity of human embryonic stem (hES) cell-derived touch receptors depends on PIEZO2. To recapitulate sensory neuron development in vitro,we established a multistep differentiation protocol and generated sensory neurons via the intermediate production of neural crest cells derived from hES cells or human induced pluripotent stem (hiPS) cells. The generated neurons express a distinct set of touch receptor-specific genes and convert mechanical stimuli into electrical signals,their most salient characteristic in vivo. Strikingly,mechanosensitivity is lost after CRISPR/Cas9-mediated PIEZO2 gene deletion. Our work establishes a model system that resembles human touch receptors,which may facilitate mechanistic analysis of other sensory subtypes and provide insight into developmental programs underlying sensory neuron diversity.
View Publication
Reference
Fukuta M et al. (DEC 2014)
PLoS ONE 9 12 e112291
Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media
Neural crest cells (NCCs) are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton,cornea,peripheral nervous system,and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs) from human pluripotent stem cells (hPSCs),such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs),further modifications are required to improve the robustness,efficacy,and simplicity of these methods. Chemically defined medium (CDM) was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions,the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin) very efficiently induced hNCCs (70-80%) from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons,glia,melanocytes,and corneal endothelial cells. In addition,cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs) were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.
View Publication
Reference
Kempf H et al. (DEC 2014)
Stem Cell Reports 3 6 1132--1146
Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture
To harness the potential of human pluripotent stem cells (hPSCs),an abundant supply of their progenies is required. Here,hPSC expansion as matrix-independent aggregates in suspension culture was combined with cardiomyogenic differentiation using chemical Wnt pathway modulators. A multiwell screen was scaled up to stirred Erlenmeyer flasks and subsequently to tank bioreactors,applying controlled feeding strategies (batch and cyclic perfusion). Cardiomyogenesis was sensitive to the GSK3 inhibitor CHIR99021 concentration,whereas the aggregate size was no prevailing factor across culture platforms. However,in bioreactors,the pattern of aggregate formation in the expansion phase dominated subsequent differentiation. Global profiling revealed a culture-dependent expression of BMP agonists/antagonists,suggesting their decisive role in cell-fate determination. Furthermore,metallothionein was discovered as a potentially stress-related marker in hPSCs. In 100 ml bioreactors,the production of 40 million predominantly ventricular-like cardiomyocytes (up to 85% purity) was enabled that were directly applicable to bioartificial cardiac tissue formation.
View Publication
Reference
Uenishi G et al. (DEC 2014)
Stem Cell Reports 3 6 1073--1084
Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions
The recent identification of hemogenic endothelium (HE) in human pluripotent stem cell (hPSC) cultures presents opportunities to investigate signaling pathways that are essential for blood development from endothelium and provides an exploratory platform for de novo generation of hematopoietic stem cells (HSCs). However,the use of poorly defined human or animal components limits the utility of the current differentiation systems for studying specific growth factors required for HE induction and manufacturing clinical-grade therapeutic blood cells. Here,we identified chemically defined conditions required to produce HE from hPSCs growing in Essential 8 (E8) medium and showed that Tenascin C (TenC),an extracellular matrix protein associated with HSC niches,strongly promotes HE and definitive hematopoiesis in this system. hPSCs differentiated in chemically defined conditions undergo stages of development similar to those previously described in hPSCs cocultured on OP9 feeders,including the formation of VE-Cadherin(+)CD73(-)CD235a/CD43(-) HE and hematopoietic progenitors with myeloid and T lymphoid potential.
View Publication
Reference
Saporta MA et al. (JAN 2015)
Experimental neurology 263 190--199
Axonal Charcot-Marie-Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties
OBJECTIVE Charcot-Marie-Tooth (CMT) disease is a group of inherited peripheral neuropathies associated with mutations or copy number variations in over 70 genes encoding proteins with fundamental roles in the development and function of Schwann cells and peripheral axons. Here,we used iPSC-derived cells to identify common pathophysiological mechanisms in axonal CMT. METHODS iPSC lines from patients with two distinct forms of axonal CMT (CMT2A and CMT2E) were differentiated into spinal cord motor neurons and used to study axonal structure and function and electrophysiological properties in vitro. RESULTS iPSC-derived motor neurons exhibited gene and protein expression,ultrastructural and electrophysiological features of mature primary spinal cord motor neurons. Cytoskeletal abnormalities were found in neurons from a CMT2E (NEFL) patient and corroborated by a mouse model of the same NEFL point mutation. Abnormalities in mitochondrial trafficking were found in neurons derived from this patient,but were only mildly present in neurons from a CMT2A (MFN2) patient. Novel electrophysiological abnormalities,including reduced action potential threshold and abnormal channel current properties were observed in motor neurons derived from both of these patients. INTERPRETATION Human iPSC-derived motor neurons from axonal CMT patients replicated key pathophysiological features observed in other models of MFN2 and NEFL mutations,including abnormal cytoskeletal and mitochondrial dynamics. Electrophysiological abnormalities found in axonal CMT iPSC-derived human motor neurons suggest that these cells are hyperexcitable and have altered sodium and calcium channel kinetics. These findings may provide a new therapeutic target for this group of heterogeneous inherited neuropathies.
View Publication
Reference
Ji H et al. (JAN 2015)
The Journal of allergy and clinical immunology 135 1 236--244
Dynamic transcriptional and epigenomic reprogramming from pediatric nasal epithelial cells to induced pluripotent stem cells
BACKGROUND Induced pluripotent stem cells (iPSCs) hold tremendous potential,both as a biological tool to uncover the pathophysiology of disease by creating relevant human cell models and as a source of cells for cell-based therapeutic applications. Studying the reprogramming process will also provide significant insight into tissue development. OBJECTIVE We sought to characterize the derivation of iPSC lines from nasal epithelial cells (NECs) isolated from nasal mucosa samples of children,a highly relevant and easily accessible tissue for pediatric populations. METHODS We performed detailed comparative analysis on the transcriptomes and methylomes of NECs,iPSCs derived from NECs (NEC-iPSCs),and embryonic stem cells (ESCs). RESULTS NEC-iPSCs express pluripotent cell markers,can differentiate into all 3 germ layers in vivo and in vitro,and have a transcriptome and methylome remarkably similar to those of ESCs. However,residual DNA methylation marks exist,which are differentially methylated between NEC-iPSCs and ESCs. A subset of these methylation markers related to epithelium development and asthma and specific to NEC-iPSCs persisted after several passages in vitro,suggesting the retention of an epigenetic memory of their tissue of origin. Our analysis also identified novel candidate genes with dynamic gene expression and DNA methylation changes during reprogramming,which are indicative of possible roles in airway epithelium development. CONCLUSION NECs are an excellent tissue source to generate iPSCs in pediatric asthmatic patients,and detailed characterization of the resulting iPSC lines would help us better understand the reprogramming process and retention of epigenetic memory.
View Publication
Reference
Wilson PG and Payne T (NOV 2014)
PeerJ 2 e668
Genetic reprogramming of human amniotic cells with episomal vectors: neural rosettes as sentinels in candidate selection for validation assays.
The promise of genetic reprogramming has prompted initiatives to develop banks of induced pluripotent stem cells (iPSCs) from diverse sources. Sentinel assays for pluripotency could maximize available resources for generating iPSCs. Neural rosettes represent a primitive neural tissue that is unique to differentiating PSCs and commonly used to identify derivative neural/stem progenitors. Here,neural rosettes were used as a sentinel assay for pluripotency in selection of candidates to advance to validation assays. Candidate iPSCs were generated from independent populations of amniotic cells with episomal vectors. Phase imaging of living back up cultures showed neural rosettes in 2 of the 5 candidate populations. Rosettes were immunopositive for the Sox1,Sox2,Pax6 and Pax7 transcription factors that govern neural development in the earliest stage of development and for the Isl1/2 and Otx2 transcription factors that are expressed in the dorsal and ventral domains,respectively,of the neural tube in vivo. Dissociation of rosettes produced cultures of differentiation competent neural/stem progenitors that generated immature neurons that were immunopositive for βIII-tubulin and glia that were immunopositive for GFAP. Subsequent validation assays of selected candidates showed induced expression of endogenous pluripotency genes,epigenetic modification of chromatin and formation of teratomas in immunodeficient mice that contained derivatives of the 3 embryonic germ layers. Validated lines were vector-free and maintained a normal karyotype for more than 60 passages. The credibility of rosette assembly as a sentinel assay for PSCs is supported by coordinate loss of nuclear-localized pluripotency factors Oct4 and Nanog in neural rosettes that emerge spontaneously in cultures of self-renewing validated lines. Taken together,these findings demonstrate value in neural rosettes as sentinels for pluripotency and selection of promising candidates for advance to validation assays.
View Publication
Reference
Yang L et al. (NOV 2014)
Nature communications 5 5507
Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells.
CRISPR/Cas9 has demonstrated a high-efficiency in site-specific gene targeting. However,potential off-target effects of the Cas9 nuclease represent a major safety concern for any therapeutic application. Here,we knock out the Tafazzin gene by CRISPR/Cas9 in human-induced pluripotent stem cells with 54% efficiency. We combine whole-genome sequencing and deep-targeted sequencing to characterise the off-target effects of Cas9 editing. Whole-genome sequencing of Cas9-modified hiPSC clones detects neither gross genomic alterations nor elevated mutation rates. Deep sequencing of in silico predicted off-target sites in a population of Cas9-treated cells further confirms high specificity of Cas9. However,we identify a single high-efficiency off-target site that is generated by a common germline single-nucleotide variant (SNV) in our experiment. Based on in silico analysis,we estimate a likelihood of SNVs creating off-target sites in a human genome to be ˜1.5-8.5%,depending on the genome and site-selection method,but also note that mutations might be generated at these sites only at low rates and may not have functional consequences. Our study demonstrates the feasibility of highly specific clonal ex vivo gene editing using CRISPR/Cas9 and highlights the value of whole-genome sequencing before personalised CRISPR design.
View Publication
Reference
Alamein MA et al. (SEP 2015)
Journal of Tissue Engineering and Regenerative Medicine 9 9 1078--1083
Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency
Expansion of pluripotent stem cells in defined media devoid of animal-derived feeder cells to generate multilayered three-dimensional (3D) bulk preparations or spheroids,rather than two-dimensional (2D) monolayers,is advantageous for many regenerative,biological or disease-modelling studies. Here we show that electrospun polymer matrices comprised of nanofibres that mimic the architecture of the natural fibrous extracellular matrix allow for feeder-free expansion of pluripotent human induced pluripotent stem cells (IPSCs) and human embryonic stem cells (HESCs) into multilayered 3D 'patty-like' spheroid structures in defined xeno-free culture medium. The observation that IPSCs and HESCs readily revert to 2D growth in the absence of the synthetic nanofibre membranes suggests that this 3D expansion behaviour is mediated by the physical microenvironment and artificial niche provided by the nanofibres only. Importantly,we could show that such 3D growth as patties maintained the pluripotency of cells as long as they were kept on nanofibres. The generation of complex multilayered 3D structures consisting of only pluripotent cells on biodegradable nanofibre matrices of the desired shape and size will enable both industrial-scale expansion and intricate organ-tissue engineering applications with human pluripotent stem cells,where simultaneous coupling of differentiation pathways of all germ layers from one stem cell source may be required for organ formation.
View Publication
Reference
Wrighton PJ et al. (DEC 2014)
Proceedings of the National Academy of Sciences of the United States of America 111 51 18126--18131
Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins.
The fate decisions of human pluripotent stem (hPS) cells are governed by soluble and insoluble signals from the microenvironment. Many hPS cell differentiation protocols use Matrigel,a complex and undefined substrate that engages multiple adhesion and signaling receptors. Using defined surfaces programmed to engage specific cell-surface ligands (i.e.,glycosaminoglycans and integrins),the contribution of specific matrix signals can be dissected. For ectoderm and motor neuron differentiation,peptide-modified surfaces that can engage both glycosaminoglycans and integrins are effective. In contrast,surfaces that interact selectively with glycosaminoglycans are superior to Matrigel in promoting hPS cell differentiation to definitive endoderm and mesoderm. The modular surfaces were used to elucidate the signaling pathways underlying these differences. Matrigel promotes integrin signaling,which in turn inhibits mesendoderm differentiation. The data indicate that integrin-activating surfaces stimulate Akt signaling via integrin-linked kinase (ILK),which is antagonistic to endoderm differentiation. The ability to attribute cellular responses to specific interactions between the cell and the substrate offers new opportunities for revealing and controlling the pathways governing cell fate.
View Publication