Sun N and Zhao H (MAY 2014)
Biotechnology and Bioengineering 111 5 1048--53
Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs.
Sickle cell disease (SCD) is the most common human genetic disease which is caused by a single mutation of human β-globin (HBB) gene. The lack of long-term treatment makes the development of reliable cell and gene therapies highly desirable. Disease-specific patient-derived human induced pluripotent stem cells (hiPSCs) have great potential for developing novel cell and gene therapies. With the disease-causing mutations corrected in situ,patient-derived hiPSCs can restore normal cell functions and serve as a renewable autologous cell source for the treatment of genetic disorders. Here we successfully utilized transcription activator-like effector nucleases (TALENs),a recently emerged novel genome editing tool,to correct the SCD mutation in patient-derived hiPSCs. The TALENs we have engineered are highly specific and generate minimal off-target effects. In combination with piggyBac transposon,TALEN-mediated gene targeting leaves no residual ectopic sequences at the site of correction and the corrected hiPSCs retain full pluripotency and a normal karyotype. Our study demonstrates an important first step of using TALENs for the treatment of genetic diseases such as SCD,which represents a significant advance toward hiPSC-based cell and gene therapies.
View Publication
Reference
Drury-Stewart D et al. (AUG 2013)
Stem cell research & therapy 4 4 93
Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice.
INTRODUCTION: Ischemic stroke is a leading cause of death and disability,but treatment options are severely limited. Cell therapy offers an attractive strategy for regenerating lost tissues and enhancing the endogenous healing process. In this study,we investigated the use of human embryonic stem cell-derived neural precursors as a cell therapy in a murine stroke model.backslashnbackslashnMETHODS: Neural precursors were derived from human embryonic stem cells by using a fully adherent SMAD inhibition protocol employing small molecules. The efficiency of neural induction and the ability of these cells to further differentiate into neurons were assessed by using immunocytochemistry. Whole-cell patch-clamp recording was used to demonstrate the electrophysiological activity of human embryonic stem cell-derived neurons. Neural precursors were transplanted into the core and penumbra regions of a focal ischemic stroke in the barrel cortex of mice. Animals received injections of bromodeoxyuridine to track regeneration. Neural differentiation of the transplanted cells and regenerative markers were measured by using immunohistochemistry. The adhesive removal test was used to determine functional improvement after stroke and intervention.backslashnbackslashnRESULTS: After 11 days of neural induction by using the small-molecule protocol,over 95% of human embryonic stem-derived cells expressed at least one neural marker. Further in vitro differentiation yielded cells that stained for mature neuronal markers and exhibited high-amplitude,repetitive action potentials in response to depolarization. Neuronal differentiation also occurred after transplantation into the ischemic cortex. A greater level of bromodeoxyuridine co-localization with neurons was observed in the penumbra region of animals receiving cell transplantation. Transplantation also improved sensory recovery in transplant animals over that in control animals.backslashnbackslashnCONCLUSIONS: Human embryonic stem cell-derived neural precursors derived by using a highly efficient small-molecule SMAD inhibition protocol can differentiate into electrophysiologically functional neurons in vitro. These cells also differentiate into neurons in vivo,enhance regenerative activities,and improve sensory recovery after ischemic stroke.
View Publication
Reference
Tadeu AMB and Horsley V (SEP 2013)
Development (Cambridge,England) 140 18 3777--86
Notch signaling represses p63 expression in the developing surface ectoderm.
The development of the mature epidermis requires a coordinated sequence of signaling events and transcriptional changes to specify surface ectodermal progenitor cells to the keratinocyte lineage. The initial events that specify epidermal keratinocytes from ectodermal progenitor cells are not well understood. Here,we use both developing mouse embryos and human embryonic stem cells (hESCs) to explore the mechanisms that direct keratinocyte fate from ectodermal progenitor cells. We show that both hESCs and murine embryos express p63 before keratin 14. Furthermore,we find that Notch signaling is activated before p63 expression in ectodermal progenitor cells. Inhibition of Notch signaling pharmacologically or genetically reveals a negative regulatory role for Notch signaling in p63 expression during ectodermal specification in hESCs or mouse embryos,respectively. Taken together,these data reveal a role for Notch signaling in the molecular control of ectodermal progenitor cell specification to the epidermal keratinocyte lineage.
View Publication
Reference
Liu P et al. (JUL 2013)
PLoS ONE 8 7 e69617
Low Immunogenicity of Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Derived from Less Immunogenic Somatic Cells
The groundbreaking discovery of induced pluripotent stem cells (iPS cells) provides a new source for cell therapy. However,whether the iPS derived functional lineages from different cell origins have different immunogenicity remains unknown. It had been known that the cells isolated from extra-embryonic tissues,such as umbilical cord mesenchymal cells (UMCs),are less immunogenic than other adult lineages such as skin fibroblasts (SFs). In this report,we differentiated iPS cells from human UMCs and SFs into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with allologous peripheral blood mononuclear cells (PBMCs),we showed that UMCs were indeed less immunogenic than skin cells to simulate proliferation of PBMCs. Surprisingly,we found that the NPCs differentiated from UMC-iPS cells retained low immunogenicity as the parental UMCs based on the PBMC proliferation assay. In cytotoxic expression assay,reactions in most kinds of immune effector cells showed more perforin and granzyme B expression with SF-NPCs stimulation than that with UMC-NPCs stimulation in PBMC co-culture system,in T cell co-culture system as well. Furthermore,through whole genome expression microarray analysis,we showed that over 70 immune genes,including all members of HLA-I,were expressed at lower levels in NPCs derived from UMC-iPS cells than that from SF-iPS cells. Our results demonstrated a phenomenon that the low immunogenicity of the less immunogenic cells could be retained after cell reprogramming and further differentiation,thus provide a new concept to generate functional lineages with lower immunogenicity for regenerative medicine.
View Publication
Reference
Lee M-YM-O et al. (AUG 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 35 E3281--90
Inhibition of pluripotent stem cell-derived teratoma formation by small molecules.
The future of safe cell-based therapy rests on overcoming teratoma/tumor formation,in particular when using human pluripotent stem cells (hPSCs),such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation,complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile,we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.e.,survivin or Bcl10) represents an efficient strategy to selectively eliminate pluripotent cells with teratoma potential. Here we report the successful identification of small molecules that can effectively inhibit these antiapoptotic factors,leading to selective and efficient removal of pluripotent stem cells through apoptotic cell death. In particular,a single treatment of hESC-derived mixed population with chemical inhibitors of survivin (e.g.,quercetin or YM155) induced selective and complete cell death of undifferentiated hPSCs. In contrast,differentiated cell types (e.g.,dopamine neurons and smooth-muscle cells) derived from hPSCs survived well and maintained their functionality. We found that quercetin-induced selective cell death is caused by mitochondrial accumulation of p53 and is sufficient to prevent teratoma formation after transplantation of hESC- or hiPSC-derived cells. Taken together,these results provide the proof of concept" that small-molecule targeting of hPSC-specific antiapoptotic pathway(s) is a viable strategy to prevent tumor formation by selectively eliminating remaining undifferentiated pluripotent cells for safe hPSC-based therapy."
View Publication
Reference
Kearns NA et al. (NOV 2013)
Stem Cell Research 11 3 1003--1012
Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules
Anterior foregut endoderm (AFE) gives rise to therapeutically relevant cell types in tissues such as the esophagus,salivary glands,lung,thymus,parathyroid and thyroid. Despite its importance,reports describing the generation of AFE from pluripotent stem cells (PSCs) by directed differentiation have mainly focused on the Nkx2.1(+) lung and thyroid lineages. Here,we describe a novel protocol to derive a subdomain of AFE,identified by expression of Pax9,from PSCs using small molecules and defined media conditions. We generated a reporter PSC line for isolation and characterization of Pax9(+) AFE cells,which when transplanted in vivo,can form several distinct complex AFE-derived epithelia,including mucosal glands and stratified squamous epithelium. Finally,we show that the directed differentiation protocol can be used to generate AFE from human PSCs. Thus,this work both broadens the range of PSC-derived AFE tissues and creates a platform enabling the study of AFE disorders.
View Publication
Reference
Akizu N et al. (AUG 2013)
Cell 154 3 505--517
AMPD2 Regulates GTP Synthesis and Is Mutated in a Potentially Treatable Neurodegenerative Brainstem Disorder
Purine biosynthesis and metabolism,conserved in all living organisms,is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation,which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. ?? 2013 Elsevier Inc.
View Publication
Reference
Yang L et al. (OCT 2013)
Nucleic Acids Research 41 19 9049--9061
Optimization of scarless human stem cell genome editing
Efficient strategies for precise genome editing in human-induced pluripotent cells (hiPSCs) will enable sophisticated genome engineering for research and clinical purposes. The development of programmable sequence-specific nucleases such as Transcription Activator-Like Effectors Nucleases (TALENs) and Cas9-gRNA allows genetic modifications to be made more efficiently at targeted sites of interest. However,many opportunities remain to optimize these tools and to enlarge their spheres of application. We present several improvements: First,we developed functional re-coded TALEs (reTALEs),which not only enable simple one-pot TALE synthesis but also allow TALE-based applications to be performed using lentiviral vectors. We then compared genome-editing efficiencies in hiPSCs mediated by 15 pairs of reTALENs and Cas9-gRNA targeting CCR5 and optimized ssODN design in conjunction with both methods for introducing specific mutations. We found Cas9-gRNA achieved 7-8× higher non-homologous end joining efficiencies (3%) than reTALENs (0.4%) and moderately superior homology-directed repair efficiencies (1.0 versus 0.6%) when combined with ssODN donors in hiPSCs. Using the optimal design,we demonstrated a streamlined process to generated seamlessly genome corrected hiPSCs within 3 weeks.
View Publication
Reference
Kim J et al. (NOV 2013)
Stem Cell Research 11 3 978--989
Alginate microcapsule as a 3D platform for the efficient differentiation of human embryonic stem cells to dopamine neurons
Human embryonic stem cells (hESCs) are emerging as an attractive alternative source for cell replacement therapy since the cells can be expanded in culture indefinitely and differentiated into any cell types in the body. In order to optimize cell-to-cell interaction,cell proliferation and differentiation into specific lineages as well as tissue organization,it is important to provide a microenvironment for the hESCs which mimics the stem cell niche. One approach is to provide a three-dimensional (3D) environment such as encapsulation. We present an approach to culture and differentiate hESCs into midbrain dopamine (mdDA) neurons in a 3D microenvironment using alginate microcapsules for the first time. A detailed gene and protein expression analysis during neuronal differentiation showed an increased gene and protein expression of various specific DA neuronal markers,particularly tyrosine hydroxylase (TH) by textgreater100 folds after 2weeks and at least 50% higher expression after 4weeks respectively,compared to cells differentiated under conventional two-dimensional (2D) platform. The encapsulated TH+ cells co-expressed mdDA neuronal markers,forkhead box protein A-2 (FOXA2) and pituitary homeobox-3 (PITX3) after 4weeks and secreted approximately 60pg/ml/106 cells higher DA level when induced. We propose that the 3D platform facilitated an early onset of DA neuronal generation compared to that with conventional 2D system which also secretes more DA under potassium-induction. It is a very useful model to study the proliferation and directed differentiation of hESCs to various lineages,particularly to mdDA neurons. This 3D system also allows the separation of feeder cells from hESCs during the process of differentiation and also has potential for immune-isolation during transplantation studies. ?? 2013 Elsevier B.V.
View Publication
Reference
Rezania A et al. (NOV 2013)
STEM CELLS 31 11 2432--2442
Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo
Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs,composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive),endocrine precursors (NKX2.2/synaptophysin-positive,hormone/NKX6.1-negative),and polyhormonal cells (insulin/glucagon-positive,NKX6.1-negative). However,the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question,we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant,both populations contained a high proportion of PDX1-expressing cells (˜85%-90%) but were distinguished by their relatively high (˜80%) or low (˜25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study,but only NKX6.1-high grafts displayed robust meal-,glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue,but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells,whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high,but not NKX6.1-low grafts expressed nuclear MAFA. Collectively,this study demonstrates that a pancreatic endoderm-enriched population can mature into highly functional β-cells with only a minor contribution from the endocrine subpopulation.
View Publication
Reference
Cao N et al. (SEP 2013)
Cell Research 23 9 1119--1132
Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs),including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs),hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases,but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4),glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs,including hESCs and hiPSCs,into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP,GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore,these CVPCs exhibited expected genome-wide molecular features of CVPCs,retained potentials to generate major cardiovascular lineages including cardiomyocytes,smooth muscle cells and endothelial cells in vitro,and were non-tumorigenic in vivo. Altogether,the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs,which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
View Publication
Reference
Legartová et al. (AUG 2013)
Epigenomics 5 4 379--396
Basic nuclear processes affected by histone acetyltransferases and histone deacetylase inhibitors
AIM The optimal balance between histone acetylation and deacetylation is important for proper gene function. Therefore,we addressed how inhibitors of histone-modifying enzymes can modulate nuclear events,including replication,transcription,splicing and DNA repair. MATERIALS & METHODS Changes in cell signaling pathways upon treatment with histone acetyltransferases and/or histone deacetylase inhibitors were studied by cDNA microarrays and western blots. RESULTS We analyzed the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and the histone acetylase inhibitor MG149. SAHA altered the expression of factors involved in DNA replication complexes,basal transcription and the spliceosome pathway. DNA repair-related genes,including Rad51,Rad54 and BRCA2,were significantly downregulated by SAHA. However,MG149 had no effect on the investigated nuclear processes,with the exception of the spliceosome network and Sestrins,involved in DNA repair. CONCLUSION Based on our results,we propose that the studied epigenetic drugs have the distinct potential to affect specific cell signaling pathways depending on their respective molecular targets.
View Publication