Cuddihy MJ et al. (APR 2013)
Small (Weinheim an der Bergstrasse,Germany) 9 7 1008--15
Replication of bone marrow differentiation niche: comparative evaluation of different three-dimensional matrices.
The comparative evaluation of different 3D matrices-Matrigel,Puramatrix,and inverted colloidal crystal (ICC) scaffolds-provides a perspective for studying the pathology and potential cures for many blood and bone marrow diseases,and further proves the significance of 3D cultures with direct cell-cell contacts for in vitro mimicry of the human stem cell niche.
View Publication
文献
Wang D et al. (OCT 2013)
Transfusion 53 10 2134--40
Antibody-mediated glycophorin C coligation on K562 cells induces phosphatidylserine exposure and cell death in an atypical apoptotic process.
BACKGROUND Glycophorin C (GPC) is necessary in the maintenance of red blood cell structure. Severe autoimmune hemolytic anemia and hemolytic disease of the fetus and newborn (HDFN) have been associated with Gerbich (Ge) blood group system antigens expressed on GPC. Previous in vitro studies with cord blood progenitor cells have shown that anti-Ge suppresses erythropoiesis. STUDY DESIGN AND METHODS Here,we evaluated the K562 erythroleukemic cell line to study the cellular effects of a murine anti-GPC. Cell proliferation was evaluated after treatment with anti-GPC. Flow cytometry was used to evaluate exofacial phosphatidylserine (PS) expression and cell viability (propidium iodide binding). Cell morphology was evaluated under light microscopy with cytospin preparations stained with May-Grünwald Giemsa. RESULTS Anti-GPC dramatically inhibited K562 proliferation and increased PS expression,consistent with cytoplasmic blebbing,suggesting evidence of apoptosis. Z-VAD-FMK,an inhibitor of classical apoptosis,was unable to reverse the suppressive effect of anti-GPC. However,hemin was able to attenuate growth suppression. CONCLUSION Together,the data suggest that anti-GPC suppresses erythroid proliferation through the induction of nonclassical apoptosis.
View Publication
文献
Huan J et al. (JAN 2013)
Cancer research 73 2 918--29
RNA trafficking by acute myelogenous leukemia exosomes.
Extrinsic signaling cues in the microenvironment of acute myelogenous leukemia (AML) contribute to disease progression and therapy resistance. Yet,it remains unknown how the bone marrow niche in which AML arises is subverted to support leukemic persistence at the expense of homeostatic function. Exosomes are cell membrane-derived vesicles carrying protein and RNA cargoes that have emerged as mediators of cell-cell communication. In this study,we examined the role of exosomes in developing the AML niche of the bone marrow microenvironment,investigating their biogenesis with a focus on RNA trafficking. We found that both primary AML and AML cell lines released exosome-sized vesicles that entered bystander cells. These exosomes were enriched for several coding and noncoding RNAs relevant to AML pathogenesis. Furthermore,their uptake by bone marrow stromal cells altered their secretion of growth factors. Proof-of-concept studies provided additional evidence for the canonical functions of the transferred RNA. Taken together,our findings revealed that AML exosome trafficking alters the proliferative,angiogenic,and migratory responses of cocultured stromal and hematopoietic progenitor cell lines,helping explain how the microenvironmental niche becomes reprogrammed during invasion of the bone marrow by AML.
View Publication
文献
Lechman ER et al. (DEC 2012)
Cell stem cell 11 6 799--811
Attenuation of miR-126 activity expands HSC in vivo without exhaustion.
Lifelong blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks,making them attractive candidate HSC regulators. We report that miR-126,a miRNA expressed in HSC and early progenitors,plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo. miR-126 knockdown by using lentiviral sponges increased HSC proliferation without inducing exhaustion,resulting in expansion of mouse and human long-term repopulating HSC. Conversely,enforced miR-126 expression impaired cell-cycle entry,leading to progressively reduced hematopoietic contribution. In HSC/early progenitors,miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway,attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size,demonstrating the importance of miRNA in the control of HSC function.
View Publication
文献
Garaycoechea JI et al. (SEP 2012)
Nature 489 7417 571--5
Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function.
Haematopoietic stem cells (HSCs) regenerate blood cells throughout the lifespan of an organism. With age,the functional quality of HSCs declines,partly owing to the accumulation of damaged DNA. However,the factors that damage DNA and the protective mechanisms that operate in these cells are poorly understood. We have recently shown that the Fanconi anaemia DNA-repair pathway counteracts the genotoxic effects of reactive aldehydes. Mice with combined inactivation of aldehyde catabolism (through Aldh2 knockout) and the Fanconi anaemia DNA-repair pathway (Fancd2 knockout) display developmental defects,a predisposition to leukaemia,and are susceptible to the toxic effects of ethanol-an exogenous source of acetaldehyde. Here we report that aged Aldh2(-/-) Fancd2(-/-) mutant mice that do not develop leukaemia spontaneously develop aplastic anaemia,with the concomitant accumulation of damaged DNA within the haematopoietic stem and progenitor cell (HSPC) pool. Unexpectedly,we find that only HSPCs,and not more mature blood precursors,require Aldh2 for protection against acetaldehyde toxicity. Additionally,the aldehyde-oxidizing activity of HSPCs,as measured by Aldefluor stain,is due to Aldh2 and correlates with this protection. Finally,there is more than a 600-fold reduction in the HSC pool of mice deficient in both Fanconi anaemia pathway-mediated DNA repair and acetaldehyde detoxification. Therefore,the emergence of bone marrow failure in Fanconi anaemia is probably due to aldehyde-mediated genotoxicity restricted to the HSPC pool. These findings identify a new link between endogenous reactive metabolites and DNA damage in HSCs,and define the protective mechanisms that counteract this threat.
View Publication
文献
Gasparetto M et al. (OCT 2012)
Experimental hematology 40 10 857--66.e5
Varying levels of aldehyde dehydrogenase activity in adult murine marrow hematopoietic stem cells are associated with engraftment and cell cycle status.
Aldehyde dehydrogenase (ALDH) activity is a widely used marker for human hematopoietic stem cells (HSCs),yet its relevance and role in murine HSCs remain unclear. We found that murine marrow cells with a high level of ALDH activity as measured by Aldefluor staining (ALDH(br) cells) do not contain known HSCs or progenitors. In contrast,highly enriched murine HSCs defined by the CD48(-)EPCR(+) and other phenotypes contain two subpopulations,one that stains dimly with Aldefluor (ALDH(dim)) and one that stains at intermediate levels (ALDH(int)). The CD48(-)EPCR(+)ALDH(dim) cells are virtually all in G(0) and yield high levels of engraftment via both intravenous and intrabone routes. In contrast the CD48(-)EPCR(+)ALDH(int) cells are virtually all in G(1),have little intravenous engraftment potential,and yet can engraft long-term after intrabone transplantation. These data demonstrate that Aldefluor staining of unfractionated murine marrow does not identify known HSCs or progenitors. However,varying levels of Aldefluor staining when combined with CD48 and EPCR detection can identify novel populations in murine marrow including a highly enriched population of resting HSCs and a previously unknown HSC population in G(1) with an intravenous engraftment defect.
View Publication
文献
Yu QC et al. (JUN 2012)
Blood 119 26 6243--54
APELIN promotes hematopoiesis from human embryonic stem cells.
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein-coupled APELIN receptor (APLNR). APLNR-positive cells,identified by binding of the fluoresceinated peptide ligand,APELIN (APLN),or an anti-APLNR mAb,were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs),increased the expression of hematoendothelial genes in differentiating hESCs,and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore,APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
View Publication
文献
Nicoud IB et al. (SEP 2012)
Transfusion 52 9 2055--62
Cryopreservation of umbilical cord blood with a novel freezing solution that mimics intracellular ionic composition.
BACKGROUND Cryopreservation protocols have remained relatively unchanged since the first umbilical cord blood banking program was established. This study evaluated the preservation efficacy of a novel intracellular-like cryopreservation solution (CryoStor,BioLife Solutions,Inc.),the rate of addition of two cryopreservation solutions to cord blood units (CBUs),and reduced final dimethyl sulfoxide (DMSO) concentration of 5%. STUDY DESIGN AND METHODS Split-sample CBUs were cryopreserved with either an in-house 20% DMSO-based cryopreservation solution or CryoStor CS10 at a rate of 1 mL/min (n = 10; i.e.,slow addition) or as a bolus injection (n = 6; i.e.,fast addition). Infrared images of exothermic effects of the cryopreservation solutions were monitored relative to the rate of addition. Prefreeze and postthaw colony-forming unit assays,total nucleated cells,and CD34+ cell counts were compared. RESULTS Maximum temperature excursions observed were less than 6°C,regardless of the rate of solution addition. Fast addition resulted in peak excursions approximately twice that of slow addition but the magnitude and duration were minimal and transient. Slow addition of CryoStor CS10 (i.e.,final concentration % 5% DMSO) resulted in significantly better postthaw CD34+ cell recoveries; no other metrics were significantly different. Fast addition of CryoStor resulted in similar postthaw metrics compared to slow addition of the in-house solution. CONCLUSION Slow and fast addition of cryopreservation solutions result in mean temperature changes of approximately 3.3 to 4.45°C. Postthaw recoveries with CryoStor were equivalent to or slightly better than with the in-house cryopreservation solution. CryoStor also provides several advantages including reduced processing time,formulation consistency,and reduced DMSO in the frozen product (% 5%).
View Publication
文献
Dichlberger A et al. (DEC 2011)
Journal of lipid research 52 12 2198--208
Lipid body formation during maturation of human mast cells.
Lipid droplets,also called lipid bodies (LB) in inflammatory cells,are important cytoplasmic organelles. However,little is known about the molecular characteristics and functions of LBs in human mast cells (MC). Here,we have analyzed the genesis and components of LBs during differentiation of human peripheral blood-derived CD34(+) progenitors into connective tissue-type MCs. In our serum-free culture system,the maturing MCs,derived from 18 different donors,invariably developed triacylglycerol (TG)-rich LBs. Not known heretofore,the MCs transcribe the genes for perilipins (PLIN)1-4,but not PLIN5,and PLIN2 and PLIN3 display different degrees of LB association. Upon MC activation and ensuing degranulation,the LBs were not cosecreted with the cytoplasmic secretory granules. Exogenous arachidonic acid (AA) enhanced LB genesis in Triacsin C-sensitive fashion,and it was found to be preferentially incorporated into the TGs of LBs. The large TG-associated pool of AA in LBs likely is a major precursor for eicosanoid production by MCs. In summary,we demonstrate that cultured human MCs derived from CD34(+) progenitors in peripheral blood provide a new tool to study regulatory mechanisms involving LB functions,with particular emphasis on AA metabolism,eicosanoid biosynthesis,and subsequent release of proinflammatory lipid mediators from these cells.
View Publication
文献
Diekmann F et al. (FEB 2012)
Nephrology,dialysis,transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 27 2 537--41
mTOR inhibition and erythropoiesis: microcytosis or anaemia?
BACKGROUND: Anaemia and microcytosis are common post kidney transplantation. The aim of this study was to evaluate the potential role of mammalian target of rapamycin (mTOR) inhibition in the development of anaemia and microcytosis in healthy animals and in human erythroid cultures in vitro. METHODS: Rats with normal kidney function were treated with sirolimus (n = 7) or vehicle (n = 8) for 15 weeks. Hemograms were determined thereafter. In the sirolimus withdrawal part of the study,rats received sirolimus (SRL) for 67 days (n = 4) 1 mg/kg three times per week or for 30 days (n = 4) and were observed until Day 120. Hemograms were performed regularly. Peripheral blood mononuclear cells from healthy controls (HC; n = 8),kidney transplant patients with sirolimus treatment with (SRL + MC; n = 8) or without microcytosis (SRL - MC; n = 8) were isolated and cultured in the absence or presence of SRL (5 ng/mL). RESULTS: SRL-treated animals had a reduced mean corpuscular volume (MCV) and elevated erythrocyte count compared with control animals after 15 weeks of treatment. This effect was evident as early as 4 weeks (MCV: 61.5 ± 1.8 versus 57 ± 1.7 fL; P = 0.0156; Red blood count 7.4 ± 0.3 × 10(9)/L versus 8.6 ± 0.5 × 10(9)/L; P = 0.0156) and was reversible 90 days after SRL withdrawal. SRL in the culture medium of erythroid cultures led to fewer colonies in cultures from HC as well as from kidney transplant patients (without SRL: 34.2 ± 11.4 versus with SRL: 27.5 ± 9.9 BFU-E-derived colonies P = 0.03),regardless if the cultures were derived from recipients with normocytic or with microcytic erythrocytes. The presence of tacrolimus in the culture medium had no influence on the number and size of colonies. CONCLUSION: mTOR inhibition induces microcytosis and polyglobulia,but not anaemia in healthy rats. This might be caused by growth inhibition of erythroid precursor cells.
View Publication
文献
Terry T et al. (JUN 2011)
PloS one 6 6 e20673
CD34/M-cadherin bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE/ mice.
BACKGROUND Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however,the optimal cell type and long-term efficacy are unknown. In this study,we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34/M-cad BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34/M-cad BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD. METHODS AND FINDINGS Colony-forming cell assays and flow cytometry analysis showed that CD34/M-cad BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE/ mice,CD34/M-cad BMCs alleviated ischemia and significantly improved blood flow compared with CD34/M-cad BMCs,CD34/M-cad BMCs,or unselected BMCs. Significantly more arterioles were seen in CD34/M-cad cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore,histologic assessment and morphometric analyses of hindlimbs treated with GFP CD34/M-cad cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP CD34/M-cad cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34/M-cad progenitor cells. A cytokine antibody array revealed that CD34/M-cad cell-conditioned medium contained higher levels of cytokines in a unique pattern,including bFGF,CRG-2,EGF,Flt-3 ligand,IGF-1,SDF-1,and VEGFR-3,than did CD34/M-cad cell-conditioned medium. The proangiogenic cytokines secreted by CD34/M-cad cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34/M-cad cells during hypoxia. CONCLUSION CD34/M-cad BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE/ mice by consistently improving blood flow and promoting arteriogenesis. Additionally,CD34/M-cad BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors.
View Publication
文献
Li L et al. (AUG 2011)
Blood 118 6 1504--15
A critical role for SHP2 in STAT5 activation and growth factor-mediated proliferation, survival, and differentiation of human CD34+ cells.
SHP2,a cytoplasmic protein-tyrosine phosphatase encoded by the PTPN11 gene,plays a critical role in developmental hematopoiesis in the mouse,and gain-of-function mutations of SHP2 are associated with hematopoietic malignancies. However,the role of SHP2 in adult hematopoiesis has not been addressed in previous studies. In addition,the role of SHP2 in human hematopoiesis has not been described. These questions are of considerable importance given the interest in development of SHP2 inhibitors for cancer treatment. We used shRNA-mediated inhibition of SHP2 expression to investigate the function of SHP2 in growth factor (GF) signaling in normal human CD34(+) cells. SHP2 knockdown resulted in markedly reduced proliferation and survival of cells cultured with GF,and reduced colony-forming cell growth. Cells expressing gain-of-function SHP2 mutations demonstrated increased dependency on SHP2 expression for survival compared with cells expressing wild-type SHP2. SHP2 knockdown was associated with significantly reduced myeloid and erythroid differentiation with retention of CD34(+) progenitors with enhanced proliferative capacity. Inhibition of SHP2 expression initially enhanced and later inhibited STAT5 phosphorylation and reduced expression of the antiapoptotic genes MCL1 and BCLXL. These results indicate an important role for SHP2 in STAT5 activation and GF-mediated proliferation,survival,and differentiation of human progenitor cells.
View Publication