技术资料
-
文献D. Verma et al. (Nov 2024) Cells 13 22LUCAT1-Mediated Competing Endogenous RNA (ceRNA) Network in Triple-Negative Breast Cancer
Breast cancer is a heterogeneous disease comprising multiple molecularly distinct subtypes with varied prevalence,prognostics,and treatment strategies. Among them,triple-negative breast cancer,though the least prevalent,is the most aggressive subtype,with limited therapeutic options. Recent emergence of competing endogenous RNA (ceRNA) networks has highlighted how long noncoding RNAs (lncRNAs),microRNAs (miRs),and mRNA orchestrate a complex interplay meticulously modulating mRNA functionality. Focusing on TNBC,this study aimed to construct a ceRNA network using differentially expressed lncRNAs,miRs,and mRNAs. We queried the differentially expressed lncRNAs (DElncRNAs) between TNBC and luminal samples and found 389 upregulated and 386 downregulated lncRNAs,including novel transcripts in TNBC. DElncRNAs were further evaluated for their clinical,functional,and mechanistic relevance to TNBCs using the lnc2cancer 3.0 database,which presented LUCAT1 (lung cancer-associated transcript 1) as a putative node. Next,the ceRNA network (lncRNA–miRNA–mRNA) of LUCAT1 was established. Several miRNA–mRNA connections of LUCAT1 implicated in regulating stemness (LUCAT1-miR-375-Yap1,LUCAT1-miR181-5p-Wnt,LUCAT1-miR-199a-5p-ZEB1),apoptosis (LUCAT1-miR-181c-5p-Bcl2),drug efflux (LUCAT1-miR-200c-ABCB1,LRP1,MRP5,MDR1),and sheddase activities (LUCAT1-miR-493-5p-ADAM10) were identified,indicating an intricate regulatory mechanism of LUCAT1 in TNBC. Indeed,LUCAT1 silencing led to mitigated cell growth,migration,and stem-like features in TNBC. This work sheds light on the LUCAT1 ceRNA network in TNBC and implies its involvement in TNBC growth and progression. View Publication -
文献A. G. L. D. Rorà et al. (Nov 2024) Journal of Translational Medicine 22Exploring the role of PARP1 inhibition in enhancing antibody–drug conjugate therapy for acute leukemias: insights from DNA damage response pathway interactions
The introduction of antibody–drug conjugates represents a significant advancement in targeted therapy of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Our study aims to investigate the role of the DNA damage response pathway and the impact of PARP1 inhibition,utilizing talazoparib,on the response of AML and ALL cells to Gemtuzumab ozogamicin (GO) and Inotuzumab ozogamicin (INO),respectively. AML and ALL cells were treated with GO,INO and γ-calicheamicin in order to induce severe DNA damage and activate the G2/M cell-cycle checkpoint in a dose- and time-dependent manner. The efficacy of PARP1 inhibitors and,in particular,talazoparib in enhancing INO or GO against ALL or AML cells was assessed through measurements of cell viability,cell death,cell cycle progression,DNA damage repair,accumulation of mitotic DNA damage and inhibition of clonogenic capacity. We observed that both ALL and AML cell lines activate the G2/M cell-cycle checkpoint in response to γ-calicheamicin-induced DNA damage,highlighting a shared cellular response mechanism. Talazoparib significantly enhanced the efficacy of INO against ALL cell lines,resulting in reduced cell viability,increased cell death,G2/M cell-cycle checkpoint override,accumulation of mitotic DNA damage and inhibition of clonogenic capacity. Strong synergism was observed in primary ALL cells treated with the combination. In contrast,AML cells exhibited a heterogeneous response to talazoparib in combination with GO. Our findings suggest a potential link between the differential responses of ALL and AML cells to the drug combinations and the ability of talazoparibto override G2/M cell-cycle arrest induced by antibody–drug conjugates. PARP1 emerges as a key player in the response of ALL cells to INO and represents a promising target for therapeutic intervention in this leukemia setting. Our study sheds light on the intricate interplay between the DNA damage response pathway,PARP1 inhibition,and response of γ-calicheamicin-induced DNA damages in AML and ALL. These findings underscore the importance of targeted therapeutic strategies and pave the way for future research aimed at optimizing leukemia treatment approaches. The online version contains supplementary material available at 10.1186/s12967-024-05838-9. View Publication -
文献K. W. Wong et al. (Nov 2024) Nature Communications 15Nuclear receptor-SINE B1 network modulates expanded pluripotency in blastoids and blastocysts
Embryonic stem cells possess the remarkable ability to self-organize into blastocyst-like structures upon induction. These stem cell-based embryo models serve as invaluable platforms for studying embryogenesis and therapeutic developments. Nevertheless,the specific intrinsic regulators that govern this potential for blastoid formation remain unknown. Here we demonstrate an intrinsic program that plays a crucial role in both blastoids and blastocysts across multiple species. We first establish metrics for grading the resemblance of blastoids to mouse blastocysts,and identify the differential activation of gene regulons involved in lineage specification among various blastoid grades. Notably,abrogation of nuclear receptor subfamily 1,group H,member 2 (Nr1h2) drastically reduces blastoid formation. Nr1h2 activation alone is sufficient to rewire conventional ESC into a distinct pluripotency state,enabling them to form blastoids with enhanced implantation capacity in the uterus and contribute to both embryonic and extraembryonic lineages in vivo. Through integrative multi-omics analyses,we uncover the broad regulatory role of Nr1h2 in the transcriptome,chromatin accessibility and epigenome,targeting genes associated with embryonic lineage and the transposable element SINE-B1. The Nr1h2-centred intrinsic program governs and drives the development of both blastoids and early embryos. Subject terms: Embryonic stem cells,Pluripotency,Epigenomics View Publication -
文献T. Guo et al. (Nov 2024) Journal of Translational Medicine 22 3Isolation and identification of patient-derived liver cancer stem cells and development of personalized treatment strategies
Liver cancer stem cells (LCSCs) are thought to drive the metastasis and recurrence,however,the heterogeneity of molecular markers of LCSCs has hindered the development of effective methods to isolate them. This study introduced an effective approach to isolate and culture LCSCs from human primary liver cancer (HPLC),leveraging mouse embryonic fibroblasts (MEFs) as feeder cells in conjunction with using defined medium. Isolated LCSCs were further characterized by multiple approaches. Transcriptome sequencing data analysis was conducted to identify highly expressed genes in LCSCs and classify different subtypes of liver cancers. Total sixteen cell strains were directly isolated from 24 tissues of three types of HPLC without sorting,seven of which could be maintained long-term culture as colony growth on MEFs,which is unique characteristics of stem cells. Even 10 of cloned cells formed the tumors in immunodeficient mice,indicating that those cloned cells were tumorgenic. The histologies and gene expression pattern of human xenografts were very similar to those of HPLC where these cloned cells were isolated. Moreover,putative markers of LCSCs were further verified to all express in cloned cells,confirming that these cells were LCSCs. These cloned LCSCs could be cryopreserved,and still maintained the feature of colony growth on MEFs after the recovery. Compared to suspension culture as conventional approach to culture LCSCs,our approach much better maintained stemness of LCSCs for a long time. To date,these cloned cells could be cultured on MEFs over 12 passages. Moreover,bioinformatics analysis of sequencing data revealed the gene expression profiles in LCSCs,and liver cancers were classified into two subtypes C1 and C2 based on genes associated with the prognosis of LCSCs. Patients of the C2 subtype,which is closely related to the extracellular matrix,were found to be sensitive to treatments such as Cisplatin,Axitinib,JAK1 inhibitors,WNT-c59,Sorafenib,and RO-3306. In summary,this effective approach offers new insights into the molecular landscape of human liver cancers,and the identification of the C2 subtype and its unique response to the treatment pave the way for the creation of more effective,personalized therapeutic strategies. The online version contains supplementary material available at 10.1186/s12967-024-05870-9. View Publication -
文献V. Rubino et al. (Nov 2024) Cell Reports Medicine 5 11IL-21/IL-21R signaling renders acute myeloid leukemia stem cells more susceptible to cytarabine treatment and CAR T cell therapy
Self-renewal programs in leukemia stem cells (LSCs) predict poor prognosis in patients with acute myeloid leukemia (AML). We identify CD4 + T cell-derived interleukin (IL)-21 as an important negative regulator of self-renewal of LSCs. IL-21/IL-21R signaling favors asymmetric cell division and differentiation in LSCs through the activation of p38-MAPK signaling,resulting in reduced LSC numbers and significantly prolonged survival in murine AML models. In human AML,serum IL-21 at diagnosis is identified as an independent positive prognostic biomarker for outcome and correlates with improved survival and higher complete remission rates in patients that underwent high-dose chemotherapy. IL-21 treatment inhibits primary LSC function and enhances the effect of cytarabine and CD70 CAR T cell treatment on LSCs in vitro . Low-dose IL-21 treatment prolongs the survival of AML mice in syngeneic and xenograft experiments. Therefore,promoting IL-21/IL-21R signaling on LSCs may be an approach to reduce stemness and increase differentiation in AML. View Publication -
文献L. D. Volpe et al. (Nov 2024) Cell Reports Medicine 5 11A p38 MAPK-ROS axis fuels proliferation stress and DNA damage during CRISPR-Cas9 gene editing in hematopoietic stem and progenitor cells
Ex vivo activation is a prerequisite to reaching adequate levels of gene editing by homology-directed repair (HDR) for hematopoietic stem and progenitor cell (HSPC)-based clinical applications. Here,we show that shortening culture time mitigates the p53-mediated DNA damage response to CRISPR-Cas9-induced DNA double-strand breaks,enhancing the reconstitution capacity of edited HSPCs. However,this results in lower HDR efficiency,rendering ex vivo culture necessary yet detrimental. Mechanistically,ex vivo activation triggers a multi-step process initiated by p38 mitogen-activated protein kinase (MAPK) phosphorylation,which generates mitogenic reactive oxygen species (ROS),promoting fast cell-cycle progression and subsequent proliferation-induced DNA damage. Thus,p38 inhibition before gene editing delays G1/S transition and expands transcriptionally defined HSCs,ultimately endowing edited cells with superior multi-lineage differentiation,persistence throughout serial transplantation,enhanced polyclonal repertoire,and better-preserved genome integrity. Our data identify proliferative stress as a driver of HSPC dysfunction with fundamental implications for designing more effective and safer gene correction strategies for clinical applications. View Publication -
文献Mao et al. (Nov 2024) Communications Biology 7Targeting protein homeostasis with small molecules as a strategy for the development of pan-coronavirus antiviral therapies
The COVID-19 pandemic has created a global health crisis,with challenges arising from the ongoing evolution of the SARS-CoV-2 virus,the emergence of new strains,and the long-term effects of COVID-19. Aiming to overcome the development of viral resistance,our study here focused on developing broad-spectrum pan-coronavirus antiviral therapies by targeting host protein quality control mechanisms essential for viral replication. Screening an in-house compound library led to the discovery of three candidate compounds targeting cellular proteostasis. The three compounds are (1) the nucleotide analog cordycepin,(2) a benzothiozole analog,and (3) an acyldepsipeptide analog initially developed as part of a campaign to target the mitochondrial ClpP protease. These compounds demonstrated dose-dependent efficacy against multiple coronaviruses,including SARS-CoV-2,effectively inhibiting viral replication in vitro as well as in lung organoids. Notably,the compounds also showed efficacy against SARS-CoV-2 delta and omicron strains. As part of this work,we developed a BSL2-level cell-integrated SARS-CoV-2 replicon,which could serve as a valuable tool for high-throughput screening and studying intracellular viral replication. Our study should aid in the advancement of antiviral drug development efforts. Subject terms: High-throughput screening,Small molecules View Publication -
文献Yang et al. (Nov 2024) PLOS ONE 19 11Identification of small molecule agonists of fetal hemoglobin expression for the treatment of sickle cell disease
Induction of fetal hemoglobin (HbF) has been shown to be a viable therapeutic approach to treating sickle cell disease and potentially other β-hemoglobinopathies. To identify targets and target-modulating small molecules that enhance HbF expression,we engineered a human umbilical-derived erythroid progenitor reporter cell line (HUDEP2_HBG1_HiBiT) by genetically tagging a HiBiT peptide to the carboxyl (C)-terminus of the endogenous HBG1 gene locus,which codes for γ-globin protein,a component of HbF. Employing this reporter cell line,we performed a chemogenomic screen of approximately 5000 compounds annotated with known targets or mechanisms that have achieved clinical stage or approval by the US Food and Drug Administration (FDA). Among them,10 compounds were confirmed for their ability to induce HbF in the HUDEP2 cell line. These include several known HbF inducers,such as pomalidomide,lenalidomide,decitabine,idoxuridine,and azacytidine,which validate the translational nature of this screening platform. We identified avadomide,autophinib,triciribine,and R574 as novel HbF inducers from these screens. We orthogonally confirmed HbF induction activities of the top hits in both parental HUDEP2 cells as well as in human primary CD34+ hematopoietic stem and progenitor cells (HSPCs). Further,we demonstrated that pomalidomide and avadomide,but not idoxuridine,induced HbF expression through downregulation of several transcriptional repressors such as BCL11A,ZBTB7A,and IKZF1. These studies demonstrate a robust phenotypic screening workflow that can be applied to large-scale small molecule profiling campaigns for the discovery of targets and pathways,as well as novel therapeutics for sickle cell disease and other β-hemoglobinopathies. View Publication -
文献H. Lee et al. (Nov 2024) Nature Communications 15Infectious parvovirus B19 circulates in the blood coated with active host protease inhibitors
The lack of a permissive cell culture system has limited high-resolution structures of parvovirus B19 (B19V) to virus-like particles (VLPs). In this study,we present the atomic resolution structure (2.2 Å) of authentic B19V purified from a patient blood sample. There are significant differences compared to non-infectious VLPs. Most strikingly,two host protease inhibitors (PIs),inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and serpinA3,were identified in complex with the capsids in all patient samples tested. The ITIH4 binds specifically to the icosahedral fivefold axis and serpinA3 occupies the twofold axis. The protein-coated virions remain infectious,and the capsid-associated PIs retain activity; however,upon virion interaction with target cells,the PIs dissociate from the capsid prior to viral entry. Our finding of an infectious virion shielded by bound host serum proteins suggests an evolutionarily favored phenomenon to evade immune surveillance and escape host protease activity. Subject terms: Cryoelectron microscopy,Virology View Publication -
文献D. Kim et al. (Oct 2024) Nature Communications 15Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane
The application of organoids has been limited by the lack of methods for producing uniformly mature organoids at scale. This study introduces an organoid culture platform,called UniMat,which addresses the challenges of uniformity and maturity simultaneously. UniMat is designed to not only ensure consistent organoid growth but also facilitate an unrestricted supply of soluble factors by a 3D geometrically-engineered,permeable membrane-based platform. Using UniMat,we demonstrate the scalable generation of kidney organoids with enhanced uniformity in both structure and function compared to conventional methods. Notably,kidney organoids within UniMat show improved maturation,showing increased expression of nephron transcripts,more in vivo-like cell-type balance,enhanced vascularization,and better long-term stability. Moreover,UniMat’s design offers a more standardized organoid model for disease modeling and drug testing,as demonstrated by polycystic-kidney disease and acute kidney injury modeling. In essence,UniMat presents a valuable platform for organoid technology,with potential applications in organ development,disease modeling,and drug screening. Subject terms: Nanofabrication and nanopatterning,Biomaterials,Stem-cell biotechnology View Publication -
文献Y. Y. Chan et al. (Oct 2024) Stem Cell Research & Therapy 15 6Targeted hematopoietic stem cell depletion through SCF-blockade
Hematopoietic stem cell transplantation (HSCT) is a curative treatment for many diverse blood and immune diseases. However,HSCT regimens currently commonly utilize genotoxic chemotherapy and/or total body irradiation (TBI) conditioning which causes significant morbidity and mortality through inducing broad tissue damage triggering infections,graft vs. host disease,infertility,and secondary cancers. We previously demonstrated that targeted monoclonal antibody (mAb)-based HSC depletion with anti(α)-CD117 mAbs could be an effective alternative conditioning approach for HSCT without toxicity in severe combined immunodeficiency (SCID) mouse models,which has prompted parallel clinical αCD117 mAbs to be developed and tested as conditioning agents in clinical trials starting with treatment of patients with SCID. Subsequent efforts have built upon this work to develop various combination approaches,though none are optimal and how any of these mAbs fully function is unknown. To improve efficacy of mAb-based conditioning as a stand-alone conditioning approach for all HSCT settings,it is critical to understand the mechanistic action of αCD117 mAbs on HSCs. Here,we compare the antagonistic properties of αCD117 mAb clones including ACK2,2B8,and 3C11 as well as ACK2 fragments in vitro and in vivo in both SCID and wildtype (WT) mouse models. Further,to augment efficacy,combination regimens were also explored. We confirm that only ACK2 inhibits SCF binding fully and prevents HSC proliferation in vitro. Further,we verify that this corresponds to HSC depletion in vivo and donor engraftment post HSCT in SCID mice. We also show that SCF-blocking αCD117 mAb fragment derivatives retain similar HSC depletion capacity with enhanced engraftment post HSCT in SCID settings,but only full αCD117 mAb ACK2 in combination with αCD47 mAb enables enhanced donor HSC engraftment in WT settings,highlighting that the Fc region is not required for single-agent efficacy in SCID settings but is required in immunocompetent settings. This combination was the only non-genotoxic conditioning approach that enabled robust donor engraftment post HSCT in WT mice. These findings shed new insights into the mechanism of αCD117 mAb-mediated HSC depletion. Further,they highlight multiple approaches for efficacy in SCID settings and optimal combinations for WT settings. This work is likely to aid in the development of clinical non-genotoxic HSCT conditioning approaches that could benefit millions of people world-wide. The online version contains supplementary material available at 10.1186/s13287-024-03981-0. View Publication -
文献C. Pascual-Caro et al. (Oct 2024) PLOS Biology 22 10Monitoring of activity-driven trafficking of endogenous synaptic proteins through proximity labeling
To enable transmission of information in the brain,synaptic vesicles fuse to presynaptic membranes,liberating their content and exposing transiently a myriad of vesicular transmembrane proteins. However,versatile methods for quantifying the synaptic translocation of endogenous proteins during neuronal activity remain unavailable,as the fast dynamics of synaptic vesicle cycling difficult specific isolation of trafficking proteins during such a transient surface exposure. Here,we developed a novel approach using synaptic cleft proximity labeling to capture and quantify activity-driven trafficking of endogenous synaptic proteins at the synapse. We show that accelerating cleft biotinylation times to match the fast dynamics of vesicle exocytosis allows capturing endogenous proteins transiently exposed at the synaptic surface during neural activity,enabling for the first time the study of the translocation of nearly every endogenous synaptic protein. As proof-of-concept,we further applied this technology to obtain direct evidence of the surface translocation of noncanonical trafficking proteins,such as ATG9A and NPTX1,which had been proposed to traffic during activity but for which direct proof had not yet been shown. The technological advancement presented here will facilitate future studies dissecting the molecular identity of proteins exocytosed at the synapse during activity,helping to define the molecular machinery that sustains neurotransmission in the mammalian brain. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号