若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系

BrainPhys™ hPSC 神经元试剂盒

用于在BrainPhys™神经元培养基中无血清培养和分化ES/iPS细胞来源的神经元的试剂盒

产品号 #(选择产品)

产品号 #05795_C

用于在BrainPhys™神经元培养基中无血清培养和分化ES/iPS细胞来源的神经元的试剂盒

产品优势

  • 更加贴近大脑细胞外微环境
  • 提高神经元功能,并促进突触活性神经元比例的提升
  • 无需更换培养基、避免细胞应激的情况下,直接开展功能性检测
  • 支持ES/iPS细胞及中枢神经系统(CNS)的神经元的长期培养
  • 严格的原材料筛选与质量控制,有效降低批次间差异,确保实验稳定性

产品组分包括

  • BrainPhys™ 神经元培养基,500 mL(产品号 #05790)
  • NeuroCult™ SM1 神经元添加物,10 mL(产品号 #05711)
  • N2 Supplement-A,5 mL(产品号 #07152)
  • 人重组 BDNF,10 µg(产品号 #78005)
  • 人重组GDNF,10 µg(产品号 #78058)

What Our Scientist Says

I want to help neuroscientists like you create more physiological culture conditions, for more active and healthy neuronal cultures.

Carmen MakScientist
Carmen Mak, Scientist

总览

使用优化配方的完整培养基,可用于培养、分化并成熟由人胚胎干(ES)细胞或诱导多能干(iPS)细胞分化的神经元,其设计目的是促进而非抑制神经元活性。

为提升使用便利性,BrainPhys™ hPSC神经元试剂盒提供了无血清BrainPhys™神经元培养基(基础培养基)、添加物和生长因子,帮助您从人ES/iPS细胞来源的神经祖细胞中生成并成熟不同类型的神经元。

BrainPhys™ 神经元培养基基于 Bardy与Gage(Bardy et al. PNAS, 2015)的配方,模拟中枢神经系统(CNS)的细胞外环境,从而诱导更高比例的突触活性神经元。其中,基于Brewer B27配方(Brewer et al. J Neurosci Res., 1993)的NeuroCult™ SM1神经元添加物可维持细胞健康,并在短期与长期无血清培养条件下促进神经突起生长与分支;N2 Supplement-A则支持ES/iPS细胞向多种神经元亚型的分化。此外,试剂盒中还包含BDNF和GDNF生长因子,用于支持谱系特异性的分化。

为了避免因培养基更换而对细胞造成压力,您还可以在进行功能性分析(例如微电极阵列记录或实时荧光成像)时使用 BrainPhys™ 培养基。

查看我们的其他资源,了解更多关于BrainPhys™ 系统的信息。

为提升使用便利性,BrainPhys™ hPSC神经元试剂盒提供了无血清BrainPhys™神经元培养基(基础培养基)、添加物和生长因子,帮助您从人ES/iPS细胞来源的神经祖细胞中生成并成熟不同类型的神经元。

BrainPhys™ 神经元培养基基于 Bardy与Gage(Bardy et al. PNAS, 2015)的配方,模拟中枢神经系统(CNS)的细胞外环境,从而诱导更高比例的突触活性神经元。其中,基于Brewer B27配方(Brewer et al. J Neurosci Res., 1993)的NeuroCult™ SM1神经元添加物可维持细胞健康,并在短期与长期无血清培养条件下促进神经突起生长与分支;N2 Supplement-A则支持ES/iPS细胞向多种神经元亚型的分化。此外,试剂盒中还包含BDNF和GDNF生长因子,用于支持谱系特异性的分化。

为了避免因培养基更换而对细胞造成压力,您还可以在进行功能性分析(例如微电极阵列记录或实时荧光成像)时使用 BrainPhys™ 培养基。

查看我们的其他资源,了解更多关于BrainPhys™ 系统的信息。

为提升使用便利性,BrainPhys™ hPSC神经元试剂盒提供了无血清BrainPhys™神经元培养基(基础培养基)、添加物和生长因子,帮助您从人ES/iPS细胞来源的神经祖细胞中生成并成熟不同类型的神经元。

BrainPhys™ 神经元培养基基于 Bardy与Gage(Bardy et al. PNAS, 2015)的配方,模拟中枢神经系统(CNS)的细胞外环境,从而诱导更高比例的突触活性神经元。其中,基于Brewer B27配方(Brewer et al. J Neurosci Res., 1993)的NeuroCult™ SM1神经元添加物可维持细胞健康,并在短期与长期无血清培养条件下促进神经突起生长与分支;N2 Supplement-A则支持ES/iPS细胞向多种神经元亚型的分化。此外,试剂盒中还包含BDNF和GDNF生长因子,用于支持谱系特异性的分化。

为了避免因培养基更换而对细胞造成压力,您还可以在进行功能性分析(例如微电极阵列记录或实时荧光成像)时使用 BrainPhys™ 培养基。

查看我们的其他资源,了解更多关于BrainPhys™ 系统的信息。

为提升使用便利性,BrainPhys™ hPSC神经元试剂盒提供了无血清BrainPhys™神经元培养基(基础培养基)、添加物和生长因子,帮助您从人ES/iPS细胞来源的神经祖细胞中生成并成熟不同类型的神经元。

BrainPhys™ 神经元培养基基于 Bardy与Gage(Bardy et al. PNAS, 2015)的配方,模拟中枢神经系统(CNS)的细胞外环境,从而诱导更高比例的突触活性神经元。其中,基于Brewer B27配方(Brewer et al. J Neurosci Res., 1993)的NeuroCult™ SM1神经元添加物可维持细胞健康,并在短期与长期无血清培养条件下促进神经突起生长与分支;N2 Supplement-A则支持ES/iPS细胞向多种神经元亚型的分化。此外,试剂盒中还包含BDNF和GDNF生长因子,用于支持谱系特异性的分化。

为了避免因培养基更换而对细胞造成压力,您还可以在进行功能性分析(例如微电极阵列记录或实时荧光成像)时使用 BrainPhys™ 培养基。

查看我们的其他资源,了解更多关于BrainPhys™ 系统的信息。

亚型
基础培养基,专用培养基
 
细胞类型
神经细胞,PSC衍生,神经元,多能干细胞
 
种属

 
应用
细胞培养,分化,培养
 
品牌
BrainPhys
 
研究领域
疾病建模,药物发现和毒理检测,神经科学,干细胞生物学
 
制剂类别
无血清
 

实验数据

Table 1. Properties of Culture Media (C Bardy et al. Proc Natl Acad Sci USA, 2015)

Check-mark denotes physiological conditions

Check-mark denotes physiological conditions and supported activities according to C Bardy et al. Proc Natl Acad Sci USA, 2015.

Rodent Neurons Matured in BrainPhys™ Neuronal Medium

Figure 1. Protocol for Culturing hPSCs with the SM1 Culture System

hPSCs were maintained in mTeSR™1 medium and then differentiated using the STEMdiff™ SMADi Neural Induction Kit. Following plating on PLO/laminin, half-medium changes were performed to transition to BrainPhys™ Neuronal Medium for maturation and long-term culture.

hPSC-Derived Neurons Generated in BrainPhys™ Neuronal Medium Express Markers of Neuronal Maturity After 14 and 44 Days of Differentiation

Figure 2. hPSC-Derived Neurons Generated in BrainPhys™ Neuronal Medium Express Markers of Neuronal Maturity After 14 and 44 Days of Differentiation

NPCs were generated from H9 cells using STEMdiff™ Neural Induction Medium in an embryoid body-based protocol. Next, NPCs were cultured in (A,C) BrainPhys™ Neuronal Medium, supplemented with 2% NeuroCult™ SM1 Supplement, 1% N2 Supplement-A, 20 ng/mL GDNF, 20 ng/mL BDNF, 1 mM db-cAMP and 200 nM ascorbic acid to initiate neuronal differentiation, or (B,D) DMEM/F12 under the same supplementation conditions. After 14 and 44 days of differentiation and maturation, neurons express the synaptic marker Synapsin 1 (green) and the mature neuronal marker MAP2 (red). In this example, neurons matured in BrainPhys™ Neuronal Medium show increased Synapsin 1 staining. Scale bar= 100 µm

hPSC-Derived Neurons Matured in BrainPhys™ Neuronal Medium Show Improved Excitatory and Inhibitory Synaptic Activity

Figure 3. hPSC-Derived Neurons Matured in BrainPhys™ Neuronal Medium Show Improved Excitatory and Inhibitory Synaptic Activity

NPCs were generated from H9 cells using STEMdiff™ Neural Induction Medium in an embryoid body-based protocol. Next, NPCs were cultured for 44 DIV in (A,C) BrainPhys™ Neuronal Medium, supplemented with 2% NeuroCult™ SM1 Supplement, 1% N2 Supplement-A, 20 ng/mL GDNF, 20 ng/mL BDNF, 1 mM db-cAMP and 200 nM ascorbic acid to initiate neuronal differentiation, or (B,D) in DMEM/F12 under the same supplementation conditions. (A,C) Neurons matured in BrainPhys™ Neuronal Medium showed spontaneous excitatory (AMPA-mediated; A) and inhibitory (GABA-mediated; C) synaptic events. The frequency and amplitude of spontaneous synaptic events is consistently greater in neuronal cultures matured in BrainPhys™ Neuronal Medium, compared to neurons plated and matured in DMEM/F12 (B,D). Traces are representative.

产品说明书及文档

请在《产品说明书》中查找相关支持信息和使用说明,或浏览下方更多实验方案。

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
05795
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Catalog #
05795
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Catalog #
05795
Lot #
All
Language
English
Document Type
Safety Data Sheet 3
Catalog #
05795
Lot #
All
Language
English

应用领域

本产品专为以下研究领域设计,适用于工作流程中的高亮阶段。探索这些工作流程,了解更多我们为各研究领域提供的其他配套产品。

相关材料与文献

技术资料 (21)

文献 (51)

Modelling Lyssavirus Infections in Human Stem Cell-Derived Neural Cultures. V. Sundaramoorthy et al. Viruses 2020 mar

Abstract

Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study, we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures, including upregulation of inflammatory chemokines, lack of neuronal apoptosis, and axonal transmission of viruses in neuronal networks. In addition, we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies, which could lead to improved control methods.
Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the Absence of Co-culture. T. P. Silva et al. Frontiers in bioengineering and biotechnology 2020

Abstract

The cerebellum plays a critical role in all vertebrates, and many neurological disorders are associated with cerebellum dysfunction. A major limitation in cerebellar research has been the lack of adequate disease models. As an alternative to animal models, cerebellar neurons differentiated from pluripotent stem cells have been used. However, previous studies only produced limited amounts of Purkinje cells. Moreover, in vitro generation of Purkinje cells required co-culture systems, which may introduce unknown components to the system. Here we describe a novel differentiation strategy that uses defined medium to generate Purkinje cells, granule cells, interneurons, and deep cerebellar nuclei projection neurons, that self-formed and differentiated into electrically active cells. Using a defined basal medium optimized for neuronal cell culture, we successfully promoted the differentiation of cerebellar precursors without the need for co-culturing. We anticipate that our findings may help developing better models for the study of cerebellar dysfunctions, while providing an advance toward the development of autologous replacement strategies for treating cerebellar degenerative diseases.
One-Stop Microfluidic Assembly of Human Brain Organoids To Model Prenatal Cannabis Exposure. Z. Ao et al. Analytical chemistry 2020

Abstract

Prenatal cannabis exposure (PCE) influences human brain development, but it is challenging to model PCE using animals and current cell culture techniques. Here, we developed a one-stop microfluidic platform to assemble and culture human cerebral organoids from human embryonic stem cells (hESC) to investigate the effect of PCE on early human brain development. By incorporating perfusable culture chambers, air-liquid interface, and one-stop protocol, this microfluidic platform can simplify the fabrication procedure and produce a large number of organoids (169 organoids per 3.5 cm × 3.5 cm device area) without fusion, as compared with conventional fabrication methods. These one-stop microfluidic assembled cerebral organoids not only recapitulate early human brain structure, biology, and electrophysiology but also have minimal size variation and hypoxia. Under on-chip exposure to the psychoactive cannabinoid, $\Delta$-9-tetrahydrocannabinol (THC), cerebral organoids exhibited reduced neuronal maturation, downregulation of cannabinoid receptor type 1 (CB1) receptors, and impaired neurite outgrowth. Moreover, transient on-chip THC treatment also decreased spontaneous firing in these organoids. This one-stop microfluidic technique enables a simple, scalable, and repeatable organoid culture method that can be used not only for human brain organoids but also for many other human organoids including liver, kidney, retina, and tumor organoids. This technology could be widely used in modeling brain and other organ development, developmental disorders, developmental pharmacology and toxicology, and drug screening.

更多信息

更多信息
种属 Human
配方类别 Serum-Free
法律声明:

BrainPhys is a registered trademark of the Salk Institute for Biological Studies, used under exclusive license. 质量保证:

产品仅供研究使用,不用于针对人或动物的诊断或治疗。 欲获悉更多关于STEMCELL的质控信息,请访问 STEMCELL.CN/COMPLIANCE.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.