Qin J et al. (NOV 2016)
Scientific reports 6 37388
Connexin 32-mediated cell-cell communication is essential for hepatic differentiation from human embryonic stem cells.
Gap junction-mediated cell-cell interactions are highly conserved and play essential roles in cell survival,proliferation,differentiation and patterning. We report that Connexin 32 (Cx32)-mediated gap junctional intercellular communication (GJIC) is necessary for human embryonic stem cell-derived hepatocytes (hESC-Heps) during step-wise hepatic lineage restriction and maturation. Vitamin K2,previously shown to promote Cx32 expression in mature hepatocytes,up-regulated Cx32 expression and GJIC activation during hepatic differentiation and maturation,resulting in significant increases of hepatic markers expression and hepatocyte functions. In contrast,negative Cx32 regulator 2-aminoethoxydiphenyl borate blocked hESC-to-hepatocyte maturation and muted hepatocyte functions through disruption of GJIC activities. Dynamic gap junction organization and internalization are phosphorylation-dependent and the p38 mitogen-activated protein kinases pathway (MAPK) can negatively regulate Cxs through phosphorylation-dependent degradation of Cxs. We found that p38 MAPK inhibitor SB203580 improved maturation of hESC-Heps correlating with up-regulation of Cx32; by contrast,the p38 MAPK activator,anisomycin,blocked hESC-Heps maturation correlating with down-regulation of Cx32. These results suggested that Cx32 is essential for cell-cell interactions that facilitate driving hESCs through hepatic-lineage maturation. Regulators of both Cx32 and other members of its pathways maybe used as a promising approach on regulating hepatic lineage restriction of pluripotent stem cells and optimizing their functional maturation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Domashenko AD et al. (OCT 2010)
Blood 116 15 2676--83
TAT-mediated transduction of NF-Ya peptide induces the ex vivo proliferation and engraftment potential of human hematopoietic progenitor cells.
Retroviral overexpression of NF-Ya,the regulatory subunit of the transcription factor NF-Y,activates the transcription of multiple genes implicated in hematopoietic stem cell (HSC) self-renewal and differentiation and directs HSCs toward self-renewal. We asked whether TAT-NF-Ya fusion protein could be used to transduce human CD34(+) cells as a safer,more regulated alternative approach to gene therapy. Here we show that externally added recombinant protein was able to enter the cell nucleus and activate HOXB4,a target gene of NF-Ya,using real-time polymerase chain reaction RNA and luciferase-based protein assays. After TAT-NF-Ya transduction,the proliferation of human CD34(+) cells in the presence of myeloid cytokines was increased 4-fold. Moreover,TAT-NF-Ya-treated human primary bone marrow cells showed a 4-fold increase in the percentage of huCD45(+) cells recovered from the bone marrow of sublethally irradiated,transplanted NOD-Scid IL2Rγ(null) mice. These data demonstrate that TAT-peptide therapies are an alternative approach to retroviral stem cell therapies and suggest that NF-Ya peptide delivery should be further evaluated as a tool for HSC/progenitors ex vivo expansion and therapy.
View Publication
采用磁珠解离技术,对人中心记忆(CD3⁺CD4⁺CD45RO⁺CD62L⁺)和效应记忆(CD3⁺CD4⁺CD45RO⁺CD62L⁻)CD4⁺ T 细胞进行免疫磁珠正选分离
Conneally E et al. (JAN 1996)
Blood 87 2 456--64
Rapid and efficient selection of human hematopoietic cells expressing murine heat-stable antigen as an indicator of retroviral-mediated gene transfer.
Recombinant retroviruses offer many advantages for the genetic modification of human hematopoietic cells,although their use in clinical protocols has thus far given disappointing results. There is therefore an important need to develop new strategies that will allow effectively transduced primitive hematopoietic target populations to be both rapidly characterized and isolated free of residual nontransduced but biologically equivalent cells. To address this need,we constructed a murine stem cell virus (MSCV)-based retroviral vector containing the 228-bp coding sequence of the murine heat-stable antigen (HSA) and generated helper virus-free amphotropic MSCV-HSA producer cells by transfection of GP-env AM12 packaging cells. Light density and,in some cases,lineage marker-negative (lin-) normal human marrow or mobilized peripheral blood cells preactivated by exposure to interleukin-3 (IL-3),IL-6,and Steel factor in vitro for 48 hours were then infected by cocultivation with these MSCV-HSA producer cells for a further 48 hours in the presence of the same cytokines. Fluorescence-activated cell sorting (FACS) analysis of the cells 24 hours later showed 21% to 41% (mean,27%) of those that were still CD34+ to have acquired the ability to express HSA. The extent of gene transfer to erythroid and granulopoietic progenitors (burst-forming unit-erythroid and colony-forming unit-granulocyte-macrophage),as assessed by the ability of these cells to form colonies of mature progeny in the presence of normally toxic concentrations of G418,averaged 11% and 12%,respectively,in 6 experiments. These values could be increased to 100% and 77%,respectively,by prior isolation of the CD34+HSA+ cell fraction and were correspondingly decreased to an average of 2% and 5%,respectively,in the CD34+HSA- cells. In addition,the extent of gene transfer to long-term culture-initiating cells (LTC-IC) was assessed by G418 resistance. The average gene transfer to LTC-IC-derived colony-forming cells in the unsorted population was textless or = 7% in 4 experiments. FACS selection of the initially CD34+HSA+ cells increased this value to 86% and decreased it to 3% for the LTC-IC plated from the CD34+HSA- cells. Transfer of HSA gene expression to a phenotypically defined more primitive subpopulation of CD34+ cells,ie,those expressing little or no CD38,could also be shown by FACS analysis of infected populations 24 hours after infection. These findings underscore the potential use of retroviral vectors encoding HSA for the specific identification and non-toxic selection immediately after infection of retrovirally transduced populations of primitive human hematopoietic cells. In addition,such vectors should facilitate the subsequent tracking of their marked progeny using multiparameter flow cytometry.
View Publication
Adult human circulating CD34 cells can differentiate into hematopoietic and endothelial cells.
A precise identification of adult human hemangioblast is still lacking. To identify circulating precursors having the developmental potential of the hemangioblast,we established a new ex vivo long-term culture model supporting the differentiation of both hematopoietic and endothelial cell lineages. We identified from peripheral blood a population lacking the expression of CD34,lineage markers,CD45 and CD133 (CD34⁻Lin⁻CD45⁻CD133⁻ cells),endowed with the ability to differentiate after a 6-week culture into both hematopoietic and endothelial lineages. The bilineage potential of CD34⁻Lin⁻CD45⁻CD133⁻ cells was determined at the single-cell level in vitro and was confirmed by transplantation into NOD/SCID mice. In vivo,CD34⁻Lin⁻CD45⁻CD133⁻ cells showed the ability to reconstitute hematopoietic tissue and to generate functional endothelial cells that contribute to new vessel formation during tumor angiogenesis. Molecular characterization of CD34⁻Lin⁻D45⁻CD133⁻ cells unveiled a stem cell profile compatible with both hematopoietic and endothelial potentials,characterized by the expression of c-Kit and CXCR4 as well as EphB4,EphB2,and ephrinB2. Further molecular and functional characterization of CD34⁻Lin⁻CD45⁻CD133⁻ cells will help dissect their physiologic role in blood and blood vessel maintenance and repair in adult life.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Kang M et al. (APR 2014)
International journal of molecular sciences 15 5 7139--7157
Generation of bladder urothelium from human pluripotent stem cells under chemically defined serum- and feeder-free system.
Human stem cells are promising sources for bladder regeneration. Among several possible sources,pluripotent stem cells are the most fascinating because they can differentiate into any cell type,and proliferate limitlessly in vitro. Here,we developed a protocol for differentiation of human pluripotent stem cells (hPSCs) into bladder urothelial cells (BUCs) under a chemically defined culture system. We first differentiated hPSCs into definitive endoderm (DE),and further specified DE cells into BUCs by treating retinoic acid under a keratinocyte-specific serum free medium. hPSC-derived DE cells showed significantly expressed DE-specific genes,but did not express mesodermal or ectodermal genes. After DE cells were specified into BUCs,they notably expressed urothelium-specific genes such as UPIb,UPII,UPIIIa,P63 and CK7. Immunocytochemistry showed that BUCs expressed UPII,CK8/18 and P63 as well as tight junction molecules,E-CADHERIN and ZO-1. Additionally,hPSCs-derived BUCs exhibited low permeability in a FITC-dextran permeability assay,indicating BUCs possessed the functional units of barrier on their surfaces. However,BUCs did not express the marker genes of other endodermal lineage cells (intestine and liver) as well as mesodermal or ectodermal lineage cells. In summary,we sequentially differentiated hPSCs into DE and BUCs in a serum- and feeder-free condition. Our differentiation protocol will be useful for producing cells for bladder regeneration and studying normal and pathological development of the human bladder urothelium in vitro.
View Publication