若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系

冻存的人外周血单核细胞

冻存的人原代细胞

产品号 #(选择产品)

产品号 #70034_C

冻存的人原代细胞

Save on high-quality cells! Take advantage of our bulk pricing discounts and price matching offer to get the best value for your purchase. Browse our Frequently Asked Questions for more information.

总览

通过免疫磁珠负选从单核细胞(MNCs)中分离人外周血原代单核细胞。单核细胞未被标记,可立即用于下游应用。PB采集过程中添加酸-柠檬酸-葡萄糖溶液A作为抗凝剂(ACDA)。

细胞采集均通过机构审查委员会(IRB)批准的知情同意书及方案进行。

某些产品仅在特定地区出售。请与您当地的销售代表或产品与科学支持联系techsupport@stemcell.com获取更多信息。

欲了解更多信息,请浏览有关原代细胞的常见问题解答(FAQs)。

包含
• CryoStor® CS10
 
亚型
冻存
 
细胞类型
单核细胞,髓系细胞
 
种属

 
细胞和组织来源
外周血
 
供体状态
Normal
 
纯度
流式细胞术检测:CD14+ ≥ 85%
 

实验数据

Figure 1. Cryopreserved Monocytes Differentiate into Dendritic Cells and Secrete IL-12 (p70) and IL-23 Upon Activation

Monocytes freshly isolated from a Leuko Pak (Catalog #70500) using EasySep™ Human Monocyte Isolation Kit (Catalog #19359) or cryopreserved Monocytes (Catalog #70034) were cultured for 6 days in RPMI 1640 Medium (Catalog #36750) with 10% FBS, 0.1 mM MEM Non-Essential Amino Acid Solution (100X, Catalog #07600), 2mM L-Glutamine (Catalog #07100), 1mM Sodium Pyruvate (Catalog #07000) and 50µM β-mercaptoethanol. Human Recombinant IL-4 (Catalog #78045) and Human Recombinant GM-CSF (Catalog #78015) were added on days 1, 3 and 6 to differentiate monocytes into DCs. Cells were either left unstimulated (control) or stimulated with LPS and Human Recombinant IFN-γ (Catalog #78020) (activated). Activation led to secretion of (A) IL-12 (p70) and (B) IL-23, which were not detectable in unstimulated controls as measured using the Human IL-12 (p70) ELISA Kit (Catalog #02014) and the Human IL-23 ELISA Kit (Catalog #02016), respectively. *Cytokine concentration of control in culture was lower than the limit of detection.

产品说明书及文档

请在《产品说明书》中查找相关支持信息和使用说明,或浏览下方更多实验方案。

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
200-0167, 200-0166, 70034
Lot #
All
Language
English

应用领域

本产品专为以下研究领域设计,适用于工作流程中的高亮阶段。探索这些工作流程,了解更多我们为各研究领域提供的其他配套产品。

相关材料与文献

技术资料 (3)

文献 (5)

Rational Drug Design of Topically Administered Caspase 1 Inhibitors for the Treatment of Inflammatory Acne. J.-F. Fournier et al. Journal of medicinal chemistry 2018 MAY

Abstract

The use of an interleukin beta$ antibody is currently being investigated in the clinic for the treatment of acne, a dermatological disorder affecting 650M persons globally. Inhibiting the protease responsible for the cleavage of inactive pro-IL1beta$ into active IL-1beta$, caspase-1, could be an alternative small molecule approach. This report describes the discovery of uracil 20, a potent (38 nM in THP1 cells assay) caspase-1 inhibitor for the topical treatment of inflammatory acne. The uracil series was designed according to a published caspase-1 pharmacophore model involving a reactive warhead in P1 for covalent reversible inhibition and an aryl moiety in P4 for selectivity against the apoptotic caspases. Reversibility was assessed in an enzymatic dilution assay or by using different substrate concentrations. In addition to classical structure-activity-relationship exploration, topical administration challenges such as phototoxicity, organic and aqueous solubility, chemical stability in solution, and skin metabolic stability are discussed and successfully resolved.
Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase. Currie KS et al. Journal of medicinal chemistry 2014 MAY

Abstract

Spleen tyrosine kinase (Syk) is an attractive drug target in autoimmune, inflammatory, and oncology disease indications. The most advanced Syk inhibitor, R406, 1 (or its prodrug form fostamatinib, 2), has shown efficacy in multiple therapeutic indications, but its clinical progress has been hampered by dose-limiting adverse effects that have been attributed, at least in part, to the off-target activities of 1. It is expected that a more selective Syk inhibitor would provide a greater therapeutic window. Herein we report the discovery and optimization of a novel series of imidazo[1,2-a]pyrazine Syk inhibitors. This work culminated in the identification of GS-9973, 68, a highly selective and orally efficacious Syk inhibitor which is currently undergoing clinical evaluation for autoimmune and oncology indications.
Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Tareen SU et al. Molecular therapy : the journal of the American Society of Gene Therapy 2014 MAR

Abstract

As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.

更多信息

更多信息
种属 Human
Contains • CryoStor® CS10
纯度 ≥ 85% CD14+ by flow cytometry
细胞与组织来源 Peripheral Blood
Donor Status Normal
质量保证:

产品仅供研究使用,不用于针对人或动物的诊断或治疗。 欲获悉更多关于STEMCELL的质控信息,请访问 STEMCELL.CN/COMPLIANCE.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.