若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系

RosetteSep™人CD8去除抗体混合物

免疫密度去除试剂混合物

产品号 #(选择产品)

产品号 #15623_C

免疫密度去除试剂混合物

产品优势

  • 快捷、操作简单
  • 不需要特殊设备或额外培训
  • 获得的活细胞无标记
  • 可与SepMate™联合使用,实现一致的     高通量     样本处理

产品组分包括

  • RosetteSep™人CD8去除抗体混合物(产品号 #15624)
    • RosetteSep™人CD8去除抗体混合物,2mL
  • RosetteSep™人CD8去除抗体混合物(产品号 #15624)
    • RosetteSep™人CD8去除抗体混合物 ,5x2mL
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more
专为您的实验方案打造的产品

总览

RosetteSep™人CD8去除混合物 从全血中去除CD8+细胞。四聚体抗体复合物可识别CD8以及红细胞(RBC)上的糖蛋白A,从而靶向去除非目的细胞。当在密度梯度介质如Lymphoprep™(产品号#18060)上离心后,非目的细胞会与红细胞一起沉淀。去除CD8+细胞后的目的细胞为血浆和密度梯度离心液的交界界面中高度富集的细胞。

亚型
细胞分选试剂盒
 
细胞类型
T 细胞,T 细胞,CD8+
 
种属

 
样本来源
Buffy Coat,Whole Blood
 
筛选方法
删除
 
应用
细胞分选
 
品牌
RosetteSep
 
研究领域
免疫
 

实验数据

FACS Histogram Results Using RosetteSep™ Human CD8+ Cell Depletion Cocktail

Figure 1. FACS Histogram Results Using RosetteSep™ Human CD8+ Cell Depletion Cocktail

产品说明书及文档

请在《产品说明书》中查找相关支持信息和使用说明,或浏览下方更多实验方案。

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
15663, 15623
Lot #
All
Language
English
Document Type
Safety Data Sheet
Catalog #
15663, 15623
Lot #
All
Language
English

应用领域

本产品专为以下研究领域设计,适用于工作流程中的高亮阶段。探索这些工作流程,了解更多我们为各研究领域提供的其他配套产品。

相关材料与文献

技术资料 (4)

常见问题

What is RosetteSep™?

RosetteSep™ is a rapid cell separation procedure for the isolation of purified cells directly from whole blood, without columns or magnets.

How does RosetteSep™ work?

The antibody cocktail crosslinks unwanted cells to red blood cells (RBCs), forming rosettes. The unwanted cells then pellet with the free RBCs when centrifuged over a density centrifugation medium (e.g. Ficoll-Paque™ PLUS, Lymphoprep™).

What factors affect cell recovery?

The temperature of the reagents can affect cell recovery. All reagents should be at room temperature (sample, density centrifugation medium, PBS, centrifuge) before performing the isolations. Layering can also affect recovery so be sure to carefully layer the sample to avoid mixing with the density centrifugation medium as much as possible. Be sure to collect the entire enriched culture without disturbing the RBC pellet. A small amount of density centrifugation medium can be collected without worry.

Which cell samples can RosetteSep™ be used with?

RosetteSep™ can be used with leukapheresis samples, bone marrow or buffy coat, as long as: the concentration of cells does not exceed 5 x 107 per mL (can dilute if necessary); and there are at least 100 RBCs for every nucleated cell (RBCs can be added if necessary).

Can RosetteSep™ be used with previously frozen or cultured cells?

Yes. Cells should be re-suspended at 2 - 5 x 107 cells / mL in PBS + 2% FBS. Fresh whole blood should be added at 250 µL per mL of sample, as a source of red cells.

Can RosetteSep™ be used to enrich progenitors from cord blood?

Yes. Sometimes cord blood contains immature nucleated red cells that have a lower density than mature RBCs. These immature red cells do not pellet over Ficoll™, which can lead to a higher RBC contamination than peripheral blood separations.

Does RosetteSep™ work with mouse cells?

No, but we have developed EasySep™, a magnetic-based cell isolation system which works with mouse and other non-human species.

Which anticoagulant should be used with RosetteSep™?

Peripheral blood should be collected in heparinized Vacutainers. Cord blood should be collected in ACD.

Should the anticoagulant be washed off before using RosetteSep™?

No, the antibody cocktail can be added directly to the sample.

文献 (6)

Comparison of the antiviral activity of the microbicide candidate griffithsin and its tandemers derivatives against different modes of HIV-1 transmission. K. Alexandre et al. Virology 2020 may

Abstract

Tandemers 2MG, 2MG3, 3MG and 4MG are derivatives of the potent anti-HIV-1 microbicide candidate griffithsin (GRFT). We compared these compounds anti-HIV-1 activity to GRFT using the viruses CAP206.08 and CAAN5342.A2 that have decreased sensitivity to this lectin. The 2MG and 2MG3 tandemers had similar activity to GRFT against cell-free and cell-associated viruses, while 3MG and 4MG were significantly more potent. Furthermore, the restoration of the 234N or 295N glycan in these viruses, known to increase sensitivity to GRFT, also increased sensitivity to 2MG and 2MG3, and not to 3MG and 4MG. In addition, GRFT resistant viruses generated in-vitro were equally resistant to 2MG and 2MG3 while they had considerably low resistance to 3MG and 4MG. Lastly, all five compounds showed increased inhibitory activity in seminal and vaginal simulants although the effect was more pronounced in the former. These data support further studies of tandemers as potential microbicides.
Enzymatic Preparation of 2'-5',3'-5'-Cyclic Dinucleotides, Their Binding Properties to Stimulator of Interferon Genes Adaptor Protein, and Structure/Activity Correlations. B. Novotn\'a et al. Journal of medicinal chemistry 2019 dec

Abstract

Cyclic dinucleotides are second messengers in the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which plays an important role in recognizing tumor cells and viral or bacterial infections. They bind to the STING adaptor protein and trigger expression of cytokines via TANK binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and inhibitor of nuclear factor-$\kappa$B (I$\kappa$B) kinase (IKK)/nuclear factor-$\kappa$B (NF$\kappa$B) signaling cascades. In this work, we describe an enzymatic preparation of 2'-5',3'-5'-cyclic dinucleotides (2'3'CDNs) with use of cyclic GMP-AMP synthases (cGAS) from human, mouse, and chicken. We profile substrate specificity of these enzymes by employing a small library of nucleotide-5'-triphosphate (NTP) analogues and use them to prepare 33 2'3'CDNs. We also determine affinity of these CDNs to five different STING haplotypes in cell-based and biochemical assays and describe properties needed for their optimal activity toward all STING haplotypes. Next, we study their effect on cytokine and chemokine induction by human peripheral blood mononuclear cells (PBMCs) and evaluate their cytotoxic effect on monocytes. Additionally, we report X-ray crystal structures of two new CDNs bound to STING protein and discuss structure-activity relationship by using quantum and molecular mechanical (QM/MM) computational modeling.
Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. L. Cao et al. Nature communications 2018 SEP

Abstract

As the sole target of broadly neutralizing antibodies (bnAbs) to HIV, the envelope glycoprotein (Env) trimer is the focus of vaccination strategies designed to elicit protective bnAbs in humans. Because HIV Env is densely glycosylated with 75-90 N-glycans per trimer, most bnAbs use or accommodate them in their binding epitope, making the glycosylation of recombinant Env a key aspect of HIV vaccine design. Upon analysis of three HIV strains, we here find that site-specific glycosylation of Env from infectious virus closely matches Envs from corresponding recombinant membrane-bound trimers. However, viral Envs differ significantly from recombinant soluble, cleaved (SOSIP) Env trimers, strongly impacting antigenicity. These results provide a benchmark for virus Env glycosylation needed for the design of soluble Env trimers as part of an overall HIV vaccine strategy.

更多信息

更多信息
种属 Human
样本来源 Buffy Coat, Whole Blood
Selection Method Depletion
质量保证:

产品仅供研究使用,不用于针对人或动物的诊断或治疗。 欲获悉更多关于STEMCELL的质控信息,请访问 STEMCELL.CN/COMPLIANCE.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.