Barbaric I et al. (SEP 2010)
Stem Cell Research 5 2 104--19
Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies.
Understanding the complex mechanisms that govern the fate decisions of human embryonic stem cells (hESCs) is fundamental to their use in cell replacement therapies. The progress of dissecting these mechanisms will be facilitated by the availability of robust high-throughput screening assays on hESCs. In this study,we report an image-based high-content assay for detecting compounds that affect hESC survival or pluripotency. Our assay was designed to detect changes in the phenotype of hESC colonies by quantifying multiple parameters,including the number of cells in a colony,colony area and shape,intensity of nuclear staining,and the percentage of cells in the colony that express a marker of pluripotency (TRA-1-60),as well as the number of colonies per well. We used this assay to screen 1040 compounds from two commercial compound libraries,and identified 17 that promoted differentiation,as well as 5 that promoted survival of hESCs. Among the novel small compounds we identified with activity on hESC are several steroids that promote hESC differentiation and the antihypertensive drug,pinacidil,which affects hESC survival. The analysis of overlapping targets of pinacidil and the other survival compounds revealed that activity of PRK2,ROCK,MNK1,RSK1,and MSK1 kinases may contribute to the survival of hESCs.
View Publication
Reference
Wilson KD et al. (JUL 2010)
Cancer research 70 13 5539--48
Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells
Human embryonic stem cells (hESC) present a novel platform for in vitro investigation of the early embryonic cellular response to ionizing radiation. Thus far,no study has analyzed the genome-wide transcriptional response to ionizing radiation in hESCs,nor has any study assessed their ability to form teratomas,the definitive test of pluripotency. In this study,we use microarrays to analyze the global gene expression changes in hESCs after low-dose (0.4 Gy),medium-dose (2 Gy),and high-dose (4 Gy) irradiation. We identify genes and pathways at each radiation dose that are involved in cell death,p53 signaling,cell cycling,cancer,embryonic and organ development,and others. Using Gene Set Enrichment Analysis,we also show that the expression of a comprehensive set of core embryonic transcription factors is not altered by radiation at any dose. Transplantation of irradiated hESCs to immune-deficient mice results in teratoma formation from hESCs irradiated at all doses,definitive proof of pluripotency. Further,using a bioluminescence imaging technique,we have found that irradiation causes hESCs to initially die after transplantation,but the surviving cells quickly recover by 2 weeks to levels similar to control. To conclude,we show that similar to somatic cells,irradiated hESCs suffer significant death and apoptosis after irradiation. However,they continue to remain pluripotent and are able to form all three embryonic germ layers. Studies such as this will help define the limits for radiation exposure for pregnant women and also radiotracer reporter probes for tracking cellular regenerative therapies.
View Publication
Reference
Nagaoka M et al. (JAN 2010)
BMC developmental biology 10 60
Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum.
BACKGROUND: To maintain pluripotency of human embryonic stem (huES) cells in feeder-free culture it has been necessary to provide a Matrigel substratum,which is a complex of poorly defined extracellular matrices and growth factors derived from mouse Engelbreth-Holm-Swarm sarcoma cells. Culture of stem cells under ill-defined conditions can inhibit the effectiveness of maintaining cells in a pluripotent state and reduce reproducibility of differentiation protocols. Moreover recent batches of Matrigel have been found to be contaminated with the single stranded RNA virus,Lactate Dehydrogenase Elevating Virus (LDEV),raising concerns regarding the safety of using stem cells that have been cultured on Matrigel in a therapeutic setting. To circumvent such concerns,we attempted to identify a recombinant matrix that could be used as an alternative to Matrigel for the culture of human pluripotent stem cells. huES and human induced pluripotent stem (hiPS) cells were grown on plates coated with a fusion protein consisting of E-cadherin and the IgG Fc domain using mTeSR1 medium.backslashnbackslashnRESULTS: Cells grown under these conditions maintained similar morphology and growth rate to those grown on Matrigel and retained all pluripotent stem cell features,including an ability to differentiate into multiple cell lineages in teratoma assays. We,therefore,present a culture system that maintains the pluripotency of huES and hiPS cells under completely defined conditions.backslashnbackslashnCONCLUSIONS: We propose that this system should facilitate growth of stem cells using good manufacturing practices (GMP),which will be necessary for the clinical use of pluripotent stem cells and their derivatives.
View Publication
Reference
Kamata M et al. (NOV 2010)
Human gene therapy 21 11 1555--67
Generation of human induced pluripotent stem cells bearing an anti-HIV transgene by a lentiviral vector carrying an internal murine leukemia virus promoter.
The recent development of induced pluripotent stem cells (iPSCs) by ectopic expression of defined reprogramming factors offers enormous therapeutic opportunity. To deliver these factors,murine leukemia virus (MLV)-based vectors have been broadly used in the setting of hematopoietic stem cell transplantation. However,MLV vectors have been implicated in malignancy induced by insertional mutagenesis,whereas lentiviral vectors have not. Furthermore,the infectivity of MLV vectors is limited to dividing cells,whereas lentiviral vectors can also transduce nondividing cells. One important characteristic of MLV vectors is a self-silencing property of the promoter element in pluripotent stem cells,allowing temporal transgene expression in a nonpluripotent state before iPSC derivation. Here we test iPSC generation using a novel chimeric vector carrying a mutant MLV promoter internal to a lentiviral vector backbone,thereby containing the useful properties of both types of vectors. Transgene expression of this chimeric vector was highly efficient compared with that of MLV vectors and was silenced specifically in human embryonic stem cells. Human fetal fibroblasts transduced with the vector encoding each factor were efficiently reprogrammed into a pluripotent state,and these iPSCs had potential to differentiate into a variety of cell types. To explore the possibility of iPSCs for gene therapy,we established iPSC clones expressing a short hairpin RNA (shRNA) targeting chemokine receptor 5 (CCR5),the main coreceptor for HIV-1. Using a reporter construct for CCR5 expression,we confirmed that CCR5 shRNA was expressed and specifically knocked down the reporter expression in iPSCs. These data indicate that our chimeric lentiviral vector is a valuable tool for generation of iPSCs and the combination with vectors encoding transgenes allows for rapid establishment of desired genetically engineered iPSC lines.
View Publication
Reference
Yoon T-MM et al. (SEP 2010)
Stem Cell Reviews and Reports 6 3 425--437
Human embryonic stem cells (hESCs) cultured under distinctive feeder-free culture conditions display global gene expression patterns similar to hESCs from feeder-dependent culture conditions.
Human embryonic stem cell (hESC)-based assay systems and genetically modified hESCs are very useful tools for screening drugs that regulate stemness and differentiation and for studying the molecular mechanisms involved in hESC fate determination. For these types of studies,feeder cell-dependent cultures of hESCs are often problematic because the physiology of the feeder cells is perturbed by the drug treatments or genetic modifications,which potentially obscures research outcomes. In this study,we evaluated three commonly used feeder-free culture conditions to determine whether they supported the undifferentiated growth of hESCs and to determine whether the hESCs grown in these conditions displayed gene expression patterns that were similar to the expression patterns of feeder cell-dependent hESCs. Our results demonstrate that hESCs grown in the three feeder-free conditions expressed undifferentiation marker genes as strongly as hESCs that were grown in the feeder-dependent cultures. Furthermore,genome-wide gene expression profiles indicated that the gene expression patterns of hESCs that were grown under feeder-free or feeder-dependent culture conditions were highly similar. These results indicate that the feeder-free culture conditions support the undifferentiated growth of hESCs as effectively as the feeder-dependent culture conditions. Therefore,feeder-free culture conditions are potentially suitable for drug screening and for the genetic manipulation of hESCs in basic research.
View Publication
Reference
Rodin S et al. (JUN 2010)
Nature biotechnology 28 6 611--5
Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511.
We describe a system for culturing human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells on a recombinant form of human laminin-511,a component of the natural hES cell niche. The system is devoid of animal products and feeder cells and contains only one undefined component,human albumin. The hES cells self-renewed with normal karyotype for at least 4 months (20 passages),after which the cells could produce teratomas containing cell lineages of all three germ layers. When plated on laminin-511 in small clumps,hES cells spread out in a monolayer,maintaining cellular homogeneity with approximately 97% OCT4-positive cells. Adhesion of hES cells was dependent on alpha6beta1 integrin. The use of homogeneous monolayer hES or iPS cell cultures provides more controllable conditions for the design of differentiation methods. This xeno-free and feeder-free system may be useful for the development of cell lineages for therapeutic purposes.
View Publication
Reference
Melkoumian Z et al. (JUN 2010)
Nature biotechnology 28 6 606--10
Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells.
Human embryonic stem cells (hESCs) have two properties of interest for the development of cell therapies: self-renewal and the potential to differentiate into all major lineages of somatic cells in the human body. Widespread clinical application of hESC-derived cells will require culture methods that are low-cost,robust,scalable and use chemically defined raw materials. Here we describe synthetic peptide-acrylate surfaces (PAS) that support self-renewal of hESCs in chemically defined,xeno-free medium. H1 and H7 hESCs were successfully maintained on PAS for over ten passages. Cell morphology and phenotypic marker expression were similar for cells cultured on PAS or Matrigel. Cells on PAS retained normal karyotype and pluripotency and were able to differentiate to functional cardiomyocytes on PAS. Finally,PAS were scaled up to large culture-vessel formats. Synthetic,xeno-free,scalable surfaces that support the self-renewal and differentiation of hESCs will be useful for both research purposes and development of cell therapies.
View Publication
Reference
Picanç et al. (JAN 2011)
Stem cells and development 20 1 169--80
Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A.
Reprogramming of somatic cells to pluripotency promises to boost cellular therapy. Most instances of direct reprogramming have been achieved by forced expression of defined exogenous factors using multiple viral vectors. The most used 4 transcription factors,octamer-binding transcription factor 4 (OCT4),(sex determining region Y)-box 2 (SOX2),Kruppel-like factor 4 (KLF4),and v-myc myelocytomatosis viral oncogene homolog (C-MYC),can induce pluripotency in mouse and human fibroblasts. Here,we report that forced expression of a new combination of transcription factors (T-cell leukemia/lymphoma protein 1A [TCL-1A],C-MYC,and SOX2) is sufficient to promote the reprogramming of human fibroblasts into pluripotent cells. These 3-factor pluripotent cells are similar to human embryonic stem cells in morphology,in the ability to differentiate into cells of the 3 embryonic layers,and at the level of global gene expression. Induced pluripotent human cells generated by a combination of other factors will be of great help for the understanding of reprogramming pathways. This,in turn,will allow us to better control cell-fate and apply this knowledge to cell therapy.
View Publication
Reference
Kunisato A et al. (JAN 2011)
Stem cells and development 20 1 159--168
Direct generation of induced pluripotent stem cells from human nonmobilized blood.
The use of induced pluripotent stem cells (iPSCs) is an exciting frontier in the study and treatment of human diseases through the generation of specific cell types. Here we show the derivation of iPSCs from human nonmobilized peripheral blood (PB) and bone marrow (BM) mononuclear cells (MNCs) by retroviral transduction of OCT3/4,SOX2,KLF4,and c-MYC. The PB- and BM-derived iPSCs were quite similar to human embryonic stem cells with regard to morphology,expression of surface antigens and pluripotency-associated transcription factors,global gene expression profiles,and differentiation potential in vitro and in vivo. Infected PB and BM MNCs gave rise to iPSCs in the presence of several cytokines,although transduction efficiencies were not high. We found that 5 × 10(5) PB MNCs,which corresponds to less than 1 mL of PB,was enough for the generation of several iPSC colonies. Generation of iPSCs from MNCs of nonmobilized PB,with its relative efficiency and ease of harvesting,could enable the therapeutic use of patient-specific pluripotent stem cells.
View Publication
Reference
Lin S et al. (JAN 2010)
Journal of visualized experiments : JoVE 39 11330
Video bioinformatics analysis of human embryonic stem cell colony growth.
Because video data are complex and are comprised of many images,mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article,we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments,hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies,recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth,three recipes were created. The first segmented the image into the colony and background,the second enhanced the image to define colonies throughout the video sequence accurately,and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes,the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared,results were virtually identical,indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition,other video bioinformatics recipes can be developed in the future for other cell processes such as migration,apoptosis,and cell adhesion.
View Publication
Reference
West PR et al. (AUG 2010)
Toxicology and Applied Pharmacology 247 1 18--27
Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics.
Teratogens,substances that may cause fetal abnormalities during development,are responsible for a significant number of birth defects. Animal models used to predict teratogenicity often do not faithfully correlate to human response. Here,we seek to develop a more predictive developmental toxicity model based on an in vitro method that utilizes both human embryonic stem (hES) cells and metabolomics to discover biomarkers of developmental toxicity. We developed a method where hES cells were dosed with several drugs of known teratogenicity then LC-MS analysis was performed to measure changes in abundance levels of small molecules in response to drug dosing. Statistical analysis was employed to select for specific mass features that can provide a prediction of the developmental toxicity of a substance. These molecules can serve as biomarkers of developmental toxicity,leading to better prediction of teratogenicity. In particular,our work shows a correlation between teratogenicity and changes of greater than 10% in the ratio of arginine to asymmetric dimethylarginine levels. In addition,this study resulted in the establishment of a predictive model based on the most informative mass features. This model was subsequently tested for its predictive accuracy in two blinded studies using eight drugs of known teratogenicity,where it correctly predicted the teratogenicity for seven of the eight drugs. Thus,our initial data shows that this platform is a robust alternative to animal and other in vitro models for the prediction of the developmental toxicity of chemicals that may also provide invaluable information about the underlying biochemical pathways. ?? 2010 Elsevier Inc.
View Publication
Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy.
Raman microspectroscopy is an attractive approach for chemical imaging of biological specimens,including live cells,without the need for chemi-selective stains. Using a microspectrometer,near-infrared Raman spectra throughout the range 663 cm(-1) to 1220 cm(-1) were obtained from colonies of CA1 human embryonic stem cells (hESCs) and CA1 cells that had been stimulated to differentiate for 3 weeks by 10% fetal bovine serum on gelatin. Distributions and intensities of spectral bands attributed to proteins varied significantly between undifferentiated and differentiated cells. Importantly,compared to proteins and lipids,the band intensities of nucleic acids were dominant in undifferentiated cells with a dominance-reversal in differentiated cells. Thus,we could identify intensity ratios of particular protein-related bands (e.g.,757 cm(-1) tryptophan) to nucleic acid bands (784 cm(-1) DNA/RNA composite) that were effective in discriminating between spectra of undifferentiated and differentiated cells. We observed no discernible negative effects due to the laser exposure in terms of morphology,proliferation,or pluripotency of the stem cells. We conclude that Raman microscopy and complementary data processing procedures provide a rapid,noninvasive approach that can distinguish hESCs from differentiated cells. This is the first report to identify specific Raman markers for the differentiation status of hESCs.
View Publication