D. M. Habiel et al. (APR 2018)
The American journal of pathology 188 4 891--903
Modeling Idiopathic Pulmonary Fibrosis in Humanized Severe Combined Immunodeficient Mice.
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease of unknown etiopathogenesis with limited therapeutic options. IPF is characterized by an abundance of fibroblasts and loss of epithelial progenitors,which cumulates in unrelenting fibrotic lung remodeling and loss of normal oxygenation. IPF has been challenging to model in rodents; nonetheless,mouse models of lung fibrosis provide clues as to the natural progression of lung injury and remodeling,but many have not been useful in predicting efficacy of therapeutics in clinical IPF. We provide a detailed methodologic description of various iterations of humanized mouse models,initiated by the i.v. injection of cells from IPF lung biopsy or explants specimens into severe combined immunodeficiency (SCID)/beige or nonobese diabetic SCID gamma$ mice. Unlike cells from normal lung samples,IPF cells promote persistent,nonresolving lung remodeling in SCID mice. Finally,we provide examples and discuss potential advantages and pitfalls of human-specific targeting approaches in a humanized SCID model of pulmonary fibrosis.
View Publication
Reference
E. C. Guinan et al. ( 2016)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 16 7 2187--95
Ex Vivo Costimulatory Blockade to Generate Regulatory T Cells From Patients Awaiting Kidney Transplantation.
Short-term outcomes of kidney transplantation have improved dramatically,but chronic rejection and regimen-related toxicity continue to compromise overall patient outcomes. Development of regulatory T cells (Tregs) as a means to decrease alloresponsiveness and limit the need for pharmacologic immunosuppression is an active area of preclinical and clinical investigation. Nevertheless,the immunomodulatory effects of end-stage renal disease on the efficacy of various strategies to generate and expand recipient Tregs for kidney transplantation are incompletely characterized. In this study,we show that Tregs can be successfully generated from either freshly isolated or previously cryopreserved uremic recipient (responder) and healthy donor (stimulator) peripheral blood mononuclear cells using the strategy of ex vivo costimulatory blockade with belatacept during mixed lymphocyte culture. Moreover,these Tregs maintain a CD3(+) CD4(+) CD25(+) CD127(lo) surface phenotype,high levels of intracellular FOXP3 and significant demethylation of the FOXP3 Treg-specific demethylation region on allorestimulation with donor stimulator cells. These data support evaluation of this simple,brief Treg production strategy in clinical trials of mismatched kidney transplantation.
View Publication
Reference
M. A. Gregory et al. ( 2016)
Proceedings of the National Academy of Sciences of the United States of America 113 43 E6669--E6678
Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML,they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors,we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism,resulting in impaired production of the antioxidant factor glutathione,which was further impaired by ATM or G6PD inactivation. Moreover,FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo,revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.
View Publication
Reference
D. M. Gravano et al. (DEC 2016)
Journal of autoimmunity 75 58--67
CD8+ T cells drive autoimmune hematopoietic stem cell dysfunction and bone marrow failure.
Bone marrow (BM) failure syndrome encompasses a group of disorders characterized by BM stem cell dysfunction,resulting in varying degrees of hypoplasia and blood pancytopenia,and in many patients is autoimmune and inflammatory in nature. The important role of T helper 1 (Th1) polarized CD4+ T cells in driving BM failure has been clearly established in several models. However,animal model data demonstrating a functional role for CD8+ T cells in BM dysfunction is largely lacking and our objective was to test the hypothesis that CD8+ T cells play a non-redundant role in driving BM failure. Clinical evidence implicates a detrimental role for CD8+ T cells in BM failure and a beneficial role for Foxp3+ regulatory T cells (Tregs) in maintaining immune tolerance in the BM. We demonstrate that IL-2-deficient mice,which have a deficit in functional Tregs,develop spontaneous BM failure. Furthermore,we demonstrate a critical role for CD8+ T cells in the development of BM failure,which is dependent on the cytokine,IFNgamma$. CD8+ T cells promote hematopoietic stem cell dysfunction and depletion of myeloid lineage progenitor cells,resulting in anemia. Adoptive transfer experiments demonstrate that CD8+ T cells dramatically expedite disease progression and promote CD4+ T cell accumulation in the BM. Thus,BM dysregulation in IL-2-deficient mice is mediated by a Th1 and IFNgamma$-producing CD8+ T cell (Tc1) response.
View Publication
Reference
R. A. Gardner et al. ( 2017)
Blood 129 25 3322--3331
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults.
Transitioning CD19-directed chimeric antigen receptor (CAR) T cells from early-phase trials in relapsed patients to a viable therapeutic approach with predictable efficacy and low toxicity for broad application among patients with high unmet need is currently complicated by product heterogeneity resulting from transduction of undefined T-cell mixtures,variability of transgene expression,and terminal differentiation of cells at the end of culture. A phase 1 trial of 45 children and young adults with relapsed or refractory B-lineage acute lymphoblastic leukemia was conducted using a CD19 CAR product of defined CD4/CD8 composition,uniform CAR expression,and limited effector differentiation. Products meeting all defined specifications occurred in 93{\%} of enrolled patients. The maximum tolerated dose was 106 CAR T cells per kg,and there were no deaths or instances of cerebral edema attributable to product toxicity. The overall intent-to-treat minimal residual disease-negative (MRD-) remission rate for this phase 1 study was 89{\%}. The MRD- remission rate was 93{\%} in patients who received a CAR T-cell product and 100{\%} in the subset of patients who received fludarabine and cyclophosphamide lymphodepletion. Twenty-three percent of patients developed reversible severe cytokine release syndrome and/or reversible severe neurotoxicity. These data demonstrate that manufacturing a defined-composition CD19 CAR T cell identifies an optimal cell dose with highly potent antitumor activity and a tolerable adverse effect profile in a cohort of patients with an otherwise poor prognosis. This trial was registered at www.clinicaltrials.gov as {\#}NCT02028455.
View Publication
Reference
J.-F. Fournier et al. (MAY 2018)
Journal of medicinal chemistry 61 9 4030--4051
Rational Drug Design of Topically Administered Caspase 1 Inhibitors for the Treatment of Inflammatory Acne.
The use of an interleukin beta$ antibody is currently being investigated in the clinic for the treatment of acne,a dermatological disorder affecting 650M persons globally. Inhibiting the protease responsible for the cleavage of inactive pro-IL1beta$ into active IL-1beta$,caspase-1,could be an alternative small molecule approach. This report describes the discovery of uracil 20,a potent (38 nM in THP1 cells assay) caspase-1 inhibitor for the topical treatment of inflammatory acne. The uracil series was designed according to a published caspase-1 pharmacophore model involving a reactive warhead in P1 for covalent reversible inhibition and an aryl moiety in P4 for selectivity against the apoptotic caspases. Reversibility was assessed in an enzymatic dilution assay or by using different substrate concentrations. In addition to classical structure-activity-relationship exploration,topical administration challenges such as phototoxicity,organic and aqueous solubility,chemical stability in solution,and skin metabolic stability are discussed and successfully resolved.
View Publication
Reference
V. Fang et al. ( 2017)
Nature immunology 18 1 15--25
Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-$\gamma$ response.
The lymph node periphery is an important site for many immunological functions,from pathogen containment to the differentiation of helper T cells,yet the cues that position cells in this region are largely undefined. Here,through the use of a reporter for the signaling lipid S1P (sphingosine 1-phosphate),we found that cells sensed higher concentrations of S1P in the medullary cords than in the T cell zone and that the S1P transporter SPNS2 on lymphatic endothelial cells generated this gradient. Natural killer (NK) cells are located at the periphery of the lymph node,predominantly in the medulla,and we found that expression of SPNS2,expression of the S1P receptor S1PR5 on NK cells,and expression of the chemokine receptor CXCR4 were all required for NK cell localization during homeostasis and rapid production of interferon-$\gamma$ by NK cells after challenge. Our findings elucidate the spatial cues for NK cell organization and reveal a previously unknown role for S1P in positioning cells within the medulla.
View Publication
Reference
P. D. W. Eckford et al. (APR 2018)
Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society
The CF Canada-Sick Kids Program in individual CF therapy: A resource for the advancement of personalized medicine in CF.
BACKGROUND Therapies targeting certain CFTR mutants have been approved,yet variations in clinical response highlight the need for in-vitro and genetic tools that predict patient-specific clinical outcomes. Toward this goal,the CF Canada-Sick Kids Program in Individual CF Therapy (CFIT) is generating a first of its kind"
View Publication
Reference
L. T. Donlin et al. (JUL 2018)
Arthritis research & therapy 20 1 139
Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue.
BACKGROUND Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. METHODS Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10{\%} DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry,as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel,each sample was flow sorted into fibroblast,T-cell,B-cell,and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. RESULTS Upon dissociation,cryopreserved synovial tissue fragments yielded a high frequency of viable cells,comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with {\~{}} 30 arthroplasty and {\~{}} 20 biopsy samples yielded a consensus digestion protocol using 100 mu$g/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes,distinct populations of memory B cells and antibody-secreting cells,and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes,fibroblasts,and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell,including transcripts encoding characteristic lineage markers identified. CONCLUSIONS We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers.
View Publication
Reference
E. A. Davis et al. (JUN 2018)
Physiological reports 6 12 e13745
Evidence for a direct effect of the autonomic nervous system on intestinal epithelial stem cell proliferation.
The sympathetic (SNS) and parasympathetic (PNS) branches of the autonomic nervous system have been implicated in the modulation of the renewal of many tissues,including the intestinal epithelium. However,it is not known whether these mechanisms are direct,requiring an interaction between autonomic neurotransmitters and receptors on proliferating epithelial cells. To evaluate the existence of a molecular framework for a direct effect of the SNS or PNS on intestinal epithelial renewal,we measured gene expression for the main autonomic neurotransmitter receptors in this tissue. We separately evaluated intestinal epithelial regions comprised of the stem,progenitor,and mature cells,which allowed us to investigate the distinct contributions of each cell population to this proposed autonomic effect. Notably,we found that the stem cells expressed the receptors for the SNS-associated alpha2A adrenoreceptor and the PNS-associated muscarinic acetylcholine receptors (M1 and M3). In a separate experiment,we found that the application of norepinephrine or acetylcholine decreases the expression of cyclin D1,a gene necessary for cell cycle progression,in intestinal epithelial organoids compared with controls (P {\textless} 0.05). Together,these results provide evidence of a direct mechanism for the autonomic nervous system influence on intestinal epithelial stem cell proliferation.
View Publication
Reference
M. K. Dame et al. (FEB 2018)
Development (Cambridge,England) 145 6
Identification, isolation and characterization of human LGR5-positive colon adenoma cells.
The intestine is maintained by stem cells located at the base of crypts and distinguished by the expression of LGR5. Genetically engineered mouse models have provided a wealth of information about intestinal stem cells,whereas less is known about human intestinal stem cells owing to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas,adenocarcinomas and normal colon,which we analyzed for variants in 71 colorectal cancer (CRC)-associated genes. Normal and neoplastic colon tissue organoids were analyzed by immunohistochemistry and fluorescent-activated cell sorting for LGR5. LGR5-positive cells were isolated from four adenoma organoid lines and were subjected to RNA sequencing. We found that LGR5 expression in the epithelium and stroma was associated with tumor stage,and by integrating functional experiments with LGR5-sorted cell RNA sequencing data from adenoma and normal organoids,we found correlations between LGR5 and CRC-specific genes,including dickkopf WNT signaling pathway inhibitor 4 (DKK4) and SPARC-related modular calcium binding 2 (SMOC2). Collectively,this work provides resources,methods and new markers to isolate and study stem cells in human tissue homeostasis and carcinogenesis.
View Publication
Reference
L. F. Cooley et al. ( 2016)
Scientific reports 6 25840