Scientific Resources
-
文献Villa GR et al. (NOV 2016) Cancer cell 30 5 683--693
An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers.
Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers,potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach,particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival,rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623,a clinically viable,highly brain-penetrant LXRα-partial/LXRβ-full agonist selectively kills GBM cells in an LXRβ- and cholesterol-dependent fashion,causing tumor regression and prolonged survival in mouse models. Thus,a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS. View Publication -
文献Vieira M et al. (AUG 2014) Neurobiology of Disease 68 26--36
Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3
Global cerebral ischemia induces selective acute neuronal injury of the CA1 region of the hippocampus. The type of cell death that ensues may include different programmed cell death mechanisms namely apoptosis and necroptosis,a recently described type of programmed necrosis. We investigated whether necroptosis contributes to hippocampal neuronal death following oxygen-glucose deprivation (OGD),an in vitro model of global ischemia. We observed that OGD induced a death receptor (DR)-dependent component of necroptotic cell death in primary cultures of hippocampal neurons. Additionally,we found that this ischemic challenge upregulated the receptor-interacting protein kinase 3 (RIP3) mRNA and protein levels,with a concomitant increase of the RIP1 protein. Together,these two related proteins form the necrosome,the complex responsible for induction of necroptotic cell death. Interestingly,we found that caspase-8 mRNA,a known negative regulator of necroptosis,was transiently decreased following OGD. Importantly,we observed that the OGD-induced increase in the RIP3 protein was paralleled in an in vivo model of transient global cerebral ischemia,specifically in the CA1 area of the hippocampus. Moreover,we show that the induction of endogenous RIP3 protein levels influenced neuronal toxicity since we found that RIP3 knock-down (KD) abrogated the component of OGD-induced necrotic neuronal death while RIP3 overexpression exacerbated neuronal death following OGD. Overexpression of RIP1 also had deleterious effects following the OGD challenge. Taken together,our results highlight that cerebral ischemia activates transcriptional changes that lead to an increase in the endogenous RIP3 protein level which might contribute to the formation of the necrosome complex and to the subsequent component of necroptotic neuronal death that follows ischemic injury. View Publication -
文献Verreault M et al. (MAR 2013) PLoS ONE 8 3 e59597
Combined RNAi-Mediated Suppression of Rictor and EGFR Resulted in Complete Tumor Regression in an Orthotopic Glioblastoma Tumor Model
The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM),and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors,and both EGFR and Rictor are associated with increased proliferation,invasion,metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines,including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing,tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan,temozolomide and vincristine. In LN229,co-silencing of EGFR and Rictor resulted in reduced cell migration,and increased sensitivity to vincristine and temozolomide. In U118MG,silencing of Rictor alone was sufficient to increase this line's sensitivity to vincristine and temozolomide. In vivo,while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth,silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective means of treating GBM. View Publication -
文献Verreault M et al. (MAR 2016) Clinical Cancer Research 22 5 1185--1196
Preclinical Efficacy of the MDM2 Inhibitor RG7112 in MDM2-Amplified and TP53 Wild-type Glioblastomas
PURPOSE p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However,this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. EXPERIMENTAL DESIGN We performed a preclinical evaluation of RG7112 MDM2 inhibitor,across a panel of 36 patient-derived GBM cell lines (PDCL),each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. RESULTS MDM2-amplified PDCLs were 44 times more sensitive than TP53-mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μmol/L vs. 21.9 μmol/L). MDM4-amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μmol/L),whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μmol/L). In MDM2-amplified lines,RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly,treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth,was cytotoxic,and significantly increased survival. CONCLUSIONS These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover,significant efficacy in a subset of non-MDM2-amplified models suggests that additional markers of response to MDM2 inhibitors must be identified. View Publication -
文献Veeraraghavalu K et al. (OCT 2013) Molecular Neurodegeneration 8 1 41
Endogenous expression of FAD-linked PS1 impairs proliferation, neuronal differentiation and survival of adult hippocampal progenitors
BACKGROUND Alzheimer's disease (AD) is characterized by progressive memory loss and impaired cognitive function. Early-onset familial forms of the disease (FAD) are caused by inheritance of mutant genes encoding presenilin 1 (PS1) variants. We have demonstrated that prion promoter (PrP)-driven expression of human FAD-linked PS1 variants in mice leads to impairments in environmental enrichment (EE)-induced adult hippocampal neural progenitor cell (AHNPC) proliferation and neuronal differentiation,and have provided evidence that accessory cells in the hippocampal niche expressing PS1 variants may modulate AHNPC phenotypes,in vivo. While of significant interest,these latter studies relied on transgenic mice that express human PS1 variant transgenes ubiquitously and at high levels,and the consequences of wild type or mutant PS1 expressed under physiologically relevant levels on EE-mediated AHNPC phenotypes has not yet been tested. RESULTS To assess the impact of mutant PS1 on EE-induced AHNPC phenotypes when expressed under physiological levels,we exposed adult mice that constitutively express the PSEN1 M146V mutation driven by the endogenous PSEN1 promoter (PS1 M146V knock-in" (KI) mice) to standard or EE-housed conditions. We show that in comparison to wild type PS1 mice AHNPCs in mice carrying homozygous (PS1M146V/M146V) or heterozygous (PS1M146V/+) M146V mutant alleles fail to exhibit EE-induced proliferation and commitment towards neurogenic lineages. More importantly we report that the survival of newborn progenitors are diminished in PS1 M146V KI mice exposed to EE-conditions compared to respective EE wild type controls. CONCLUSIONS Our findings reveal that expression at physiological levels achieved by a single PS1 M146V allele is sufficient to impair EE-induced AHNPC proliferation survival and neuronal differentiation in vivo. These results and our finding that microglia expressing a single PS1 M146V allele impairs the proliferation of wild type AHNPCs in vitro argue that expression of mutant PS1 in the AHNPC niche impairs AHNPCs phenotypes in a dominant non-cell autonomous manner. View Publication -
文献Usta S et al. (OCT 2014) Annals of translational medicine 2 10 97
Chemically defined serum-free and xeno-free media for multiple cell lineages.
Cell culture is one of the most common methods used to recapitulate a human disease environment in a laboratory setting. Cell culture techniques are used to grow and maintain cells of various types including those derived from primary tissues,such as stem cells and cancer tumors. However,a major confounding factor with cell culture is the use of serum and animal (xeno) products in the media. The addition of animal products introduces batch and lot variations that lead to experimental variability,confounds studies with therapeutic outcomes for cultured cells,and represents a major cost associated with cell culture. Here we report a commercially available serum-free,albumin-free,and xeno free (XF) media (Neuro-Pure(TM)) that is more cost-effective than other commercial medias. Neuro-Pure was used to maintain and differentiate various cells of neuronal lineages,fibroblasts,as well as specific cancer cell lines; without the use of contaminants such serum,albumin,and animal products. Neuro-Pure allows for a controlled and reproducible cell culture environment that is applicable to translational medicine and general tissue culture. View Publication -
文献Trevisan M et al. (JAN 2017) International journal of molecular sciences 18 1
Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.
Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka,who first generated iPSCs by retroviral transduction of four reprogramming factors,several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However,the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study,three different strategies,based on retroviral vectors,episomal vectors,and Sendai virus vectors,were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells,including the expression of alkaline phosphatase and stemness maker genes,and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion,the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs. View Publication -
文献Teratani-Ota Y et al. (OCT 2016) In vitro cellular & developmental biology. Animal 52 9 961--973
Induction of specific neuron types by overexpression of single transcription factors.
Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods,however,mostly rely on the effects of the combined action of multiple added growth factors,which generally tend to result in mixed populations of neurons. Here,we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1,Smad7,Nr2f1,Dlx2,Dlx4,Nr2f2,Barhl2,and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way,we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1,Fezf2,and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies,enrichment of cells obtained with the induction of Ascl1,Smad7,and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary,this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types. View Publication -
文献Tan Q et al. (JAN 2018) JCI insight 3 1
Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice.
B cells play an important role in type 1 diabetes (T1D) development. However,the role of B cell activation-induced cytidine deaminase (AID) in diabetes development is not clear. We hypothesized that AID is important in the immunopathogenesis of T1D. To test this hypothesis,we generated AID-deficient (AID-/-) NOD mice. We found that AID-/-NOD mice developed accelerated T1D,with worse insulitis and high levels of anti-insulin autoantibody in the circulation. Interestingly,neither maternal IgG transferred through placenta,nor IgA transferred through milk affected the accelerated diabetes development. AID-/-NOD mice showed increased activation and proliferation of B and T cells. We found enhanced T-B cell interactions in AID-/-NOD mice,with increased T-bet and IFN-γ expression in CD4+ T cells in the presence of AID-/- B cells. Moreover,excessive lymphoid expansion was observed in AID-/-NOD mice. Importantly,antigen-specific BDC2.5 CD4+ T cells caused more rapid onset of diabetes when cotransferred with AID-/- B cells than when cotransferred with AID+/+ B cells. Thus,our study provides insights into the role of AID in T1D. Our data also suggest that AID is a negative regulator of immune tolerance and ablation of AID can lead to exacerbated islet autoimmunity and accelerated T1D development. View Publication -
文献Tagliafierro L et al. (NOV 2017) Alzheimer's & dementia : the journal of the Alzheimer's Association 13 11 1237--1250
Genetic analysis of α-synuclein 3' untranslated region and its corresponding microRNAs in relation to Parkinson's disease compared to dementia with Lewy bodies.
INTRODUCTION The α-synuclein (SNCA) gene has been implicated in the etiology of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). METHODS A computational analysis of SNCA 3' untranslated region to identify potential microRNA (miRNA) binding sites and quantitative real-time polymerase chain reaction (PCR) to determine their expression in isogenic induced pluripotent stem cell-derived dopaminergic and cholinergic neurons as a model of PD and DLB,respectively,were performed. In addition,we performed a deep sequencing analysis of the SNCA 3' untranslated region of autopsy-confirmed cases of PD,DLB,and normal controls,followed by genetic association analysis of the identified variants. RESULTS We identified four miRNA binding sites and observed a neuronal-type-specific expression profile for each miRNA in the different isogenic induced pluripotent stem cell-derived dopaminergic and cholinergic neurons. Furthermore,we found that the short structural variant rs777296100-polyT was moderately associated with DLB but not with PD. DISCUSSION We suggest that the regulation of SNCA expression through miRNAs is neuronal-type-specific and possibly plays a part in the phenotypic heterogeneity of synucleinopathies. Furthermore,genetic variability in the SNCA gene may contribute to synucleinopathies in a pathology-specific manner. View Publication -
文献Swartz EW et al. (NOV 2016) STEM CELLS Translational Medicine 5 11 1461--1472
A Novel Protocol for Directed Differentiation of C9orf72-Associated Human Induced Pluripotent Stem Cells Into Contractile Skeletal Myotubes
: Induced pluripotent stem cells (iPSCs) offer an unlimited resource of cells to be used for the study of underlying molecular biology of disease,therapeutic drug screening,and transplant-based regenerative medicine. However,methods for the directed differentiation of skeletal muscle for these purposes remain scarce and incomplete. Here,we present a novel,small molecule-based protocol for the generation of multinucleated skeletal myotubes using eight independent iPSC lines. Through combinatorial inhibition of phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) with addition of bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2),we report up to 64% conversion of iPSCs into the myogenic program by day 36 as indicated by MYOG+ cell populations. These cells began to exhibit spontaneous contractions as early as 34 days in vitro in the presence of a serum-free medium formulation. We used this protocol to obtain iPSC-derived muscle cells from frontotemporal dementia (FTD) patients harboring C9orf72 hexanucleotide repeat expansions (rGGGGCC),sporadic FTD,and unaffected controls. iPSCs derived from rGGGGCC carriers contained RNA foci but did not vary in differentiation efficiency when compared to unaffected controls nor display mislocalized TDP-43 after as many as 120 days in vitro. This study presents a rapid,efficient,and transgene-free method for generating multinucleated skeletal myotubes from iPSCs and a resource for further modeling the role of skeletal muscle in amyotrophic lateral sclerosis and other motor neuron diseases. SIGNIFICANCE Protocols to produce skeletal myotubes for disease modeling or therapy are scarce and incomplete. The present study efficiently generates functional skeletal myotubes from human induced pluripotent stem cells using a small molecule-based approach. Using this strategy,terminal myogenic induction of up to 64% in 36 days and spontaneously contractile myotubes within 34 days were achieved. Myotubes derived from patients carrying the C9orf72 repeat expansion show no change in differentiation efficiency and normal TDP-43 localization after as many as 120 days in vitro when compared to unaffected controls. This study provides an efficient,novel protocol for the generation of skeletal myotubes from human induced pluripotent stem cells that may serve as a valuable tool in drug discovery and modeling of musculoskeletal and neuromuscular diseases. View Publication -
文献Stutz MD et al. (DEC 2017) Cell death and differentiation
Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted.
Mixed lineage kinase domain-like (MLKL)-dependent necroptosis is thought to be implicated in the death of mycobacteria-infected macrophages,reportedly allowing escape and dissemination of the microorganism. Given the consequent interest in developing inhibitors of necroptosis to treat Mycobacterium tuberculosis (Mtb) infection,we used human pharmacologic and murine genetic models to definitively establish the pathophysiological role of necroptosis in Mtb infection. We observed that Mtb infection of macrophages remodeled the intracellular signaling landscape by upregulating MLKL,TNFR1,and ZBP1,whilst downregulating cIAP1,thereby establishing a strong pro-necroptotic milieu. However,blocking necroptosis either by deleting Mlkl or inhibiting RIPK1 had no effect on the survival of infected human or murine macrophages. Consistent with this,MLKL-deficiency or treatment of humanized mice with the RIPK1 inhibitor Nec-1s did not impact on disease outcomes in vivo,with mice displaying lung histopathology and bacterial burdens indistinguishable from controls. Therefore,although the necroptotic pathway is primed by Mtb infection,macrophage necroptosis is ultimately restricted to mitigate disease pathogenesis. We identified cFLIP upregulation that may promote caspase 8-mediated degradation of CYLD,and other necrosome components,as a possible mechanism abrogating Mtb's capacity to coopt necroptotic signaling. Variability in the capacity of these mechanisms to interfere with necroptosis may influence disease severity and could explain the heterogeneity of Mtb infection and disease. View Publication
过滤器
筛选结果
品牌
- ALDECOUNT 9 项目
- CellPore 8 项目
- CellSTACK 1 项目
- Corning 1 项目
- EasyPick 2 项目
- ELISA 2 项目
- ErythroClear 3 项目
- ES-Cult 95 项目
- Falcon 1 项目
- GloCell 2 项目
- GyneCult 2 项目
- HetaSep 2 项目
- iCell 14 项目
- Maestro 4 项目
- Matrigel 3 项目
- MegaCult 38 项目
- STEMgrid 1 项目
- STEMprep 2 项目
- ALDEFLUOR 231 项目
- AggreWell 68 项目
- ArciTect 35 项目
- BloodStor 2 项目
- BrainPhys 49 项目
- CellAdhere 2 项目
- ClonaCell 93 项目
- CloneR 9 项目
- CryoStor 78 项目
- EC-Cult 3 项目
- EasySep 741 项目
- EpiCult 13 项目
- HemaTox 7 项目
- HepatiCult 23 项目
- ImmunoCult 54 项目
- IntestiCult 128 项目
- Lymphoprep 24 项目
- MammoCult 55 项目
- MesenCult 105 项目
- MethoCult 518 项目
- MyeloCult 80 项目
- MyoCult 9 项目
- NaïveCult 1 项目
- NeuroCult 360 项目
- NeuroFluor 4 项目
- PBS-MINI 11 项目
- PancreaCult 19 项目
- PneumaCult 86 项目
- RSeT 10 项目
- ReLeSR 5 项目
- RoboSep 99 项目
- RosetteSep 281 项目
- STEMdiff 189 项目
- STEMscript 1 项目
- STEMvision 27 项目
- SepMate 47 项目
- SmartDish 11 项目
- StemSpan 327 项目
- TeSR 1676 项目
- ThawSTAR 10 项目
- mFreSR 35 项目
产品类型
- Antibodies 2 项目
- Cell Culture Media and Supplements 350 项目
- Cell Dyes and Detection Assay Kits 11 项目
- Cell Engineering and Molecular Tools 22 项目
- Cell Isolation Products 106 项目
- Cell Storage Media 2 项目
- Contract Services 6 项目
- Cultureware and General Supplies 2 项目
- Cytokines and Proteins 3 项目
- Density Gradient Media 1 项目
- Instruments and Software 11 项目
- Laboratory Equipment 2 项目
- Matrices and Substrates 1 项目
- Primary and Cultured Cells 33 项目
- Small Molecules 1 项目
- Standardization Tools 5 项目
- Tissue and Cell Culture Dissociation Reagents 12 项目
- Training and Education 29 项目
- ELISAs 1 项目
资源类别
细胞类型
- B 细胞 182 项目
- Cardiomyocytes 21 项目
- CD4+ 121 项目
- CD8+ 92 项目
- CHO细胞 3 项目
- Endoderm 18 项目
- Endothelial Cells 12 项目
- Epithelial Cells 29 项目
- HEK-293细胞(人胚肾293细胞) 1 项目
- Hematopoietic Cells 22 项目
- Hepatic Cells 13 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- Mesenchymal Cells 18 项目
- Mesoderm 18 项目
- Neural Cells 89 项目
- NK 细胞 121 项目
- Other Subsets 21 项目
- PSC-Derived 128 项目
- PSC衍生 27 项目
- Regulatory 34 项目
- T Cells 102 项目
- T 细胞 352 项目
- 上皮细胞 106 项目
- 中胚层 1 项目
- 乳腺细胞 74 项目
- 先天性淋巴细胞 23 项目
- 全血 6 项目
- 内皮细胞 8 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 前列腺细胞 8 项目
- 单个核细胞 73 项目
- 单核细胞 142 项目
- 多巴胺能神经元 3 项目
- 多能干细胞 1859 项目
- 小胶质细胞 3 项目
- 巨噬细胞 25 项目
- 巨核细胞 8 项目
- 心肌细胞 15 项目
- 成骨细胞 6 项目
- 星形胶质细胞 2 项目
- 杂交瘤细胞 83 项目
- 树突状细胞(DCs) 91 项目
- 气道细胞 73 项目
- 淋巴细胞 33 项目
- 癌细胞及细胞系 130 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 真皮细胞 2 项目
- 神经元 165 项目
- 神经干/祖细胞 420 项目
- 神经细胞 6 项目
- 粒细胞及其亚群 76 项目
- 红系细胞 9 项目
- 肌源干/祖细胞 9 项目
- 肝细胞 25 项目
- 肠道细胞 61 项目
- 肾细胞 3 项目
- 肾脏细胞 4 项目
- 肿瘤细胞 11 项目
- 胰腺细胞 12 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 87 项目
- 血小板 4 项目
- 血浆 16 项目
- 血管生成细胞 2 项目
- 调节性细胞 9 项目
- 软骨细胞 7 项目
- 造血干/祖细胞 875 项目
- 间充质基质细胞 13 项目
- 间充质干/祖细胞 156 项目
- 间充质细胞 1 项目
- 骨髓基质细胞 2 项目
- 骨髓瘤细胞 4 项目
- 髓系细胞 116 项目
- 鼠胚胎成纤维细胞 1 项目
- 白细胞 9 项目
- 其它细胞系 5 项目
- 红细胞 10 项目
研究方向
种属