Xu X et al. (MAR 2017)
Stem Cell Reports 8 3 619--633
Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable,synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells,including impaired neural rosette formation,increased susceptibility to growth factor withdrawal,and deficits in mitochondrial respiration,are rescued in isogenic controls. Importantly,using genome-wide expression analysis,we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines,suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities,and the importance of isogenic controls for disease modeling using hiPSCs.
View Publication
文献
Bayat Mokhtari R et al. (DEC 2017)
BMC Cancer 17 1 156
Acetazolamide potentiates the anti-tumor potential of HDACi, MS-275, in neuroblastoma
BACKGROUND Neuroblastoma (NB),a tumor of the primitive neural crest,despite aggressive treatment portends a poor long-term survival for patients with advanced high stage NB. New treatment strategies are required. METHODS We investigated coordinated targeting of essential homeostatic regulatory factors involved in cancer progression,histone deacetylases (HDACs) and carbonic anhydrases (CAs). RESULTS We evaluated the antitumor potential of the HDAC inhibitor (HDACi),pyridylmethyl-N-4-[(2-aminophenyl)-carbamoyl]-benzyl-carbamate (MS-275) in combination with a pan CA inhibitor,acetazolamide (AZ) on NB SH-SY5Y,SK-N-SH and SK-N-BE(2) cells. The key observation was that the combination AZ + MS-275 significantly inhibited growth,induced cell cycle arrest and apoptosis,and reduced migration capacity of NB cell line SH-SY5Y. In addition,this combination significantly inhibited tumor growth in vivo,in a pre-clinical xenograft model. Evidence was obtained for a marked reduction in tumorigenicity and in the expression of mitotic,proliferative,HIF-1α and CAIX. NB xenografts of SH-SY5Y showed a significant increase in apoptosis. CONCLUSION MS-275 alone at nanomolar concentrations significantly reduced the putative cancer stem cell (CSC) fraction of NB cell lines,SH-SY5Y and SK-N-BE(2),in reference to NT2/D1,a teratocarcinoma cell line,exhibiting a strong stem cell like phenotype in vitro. Whereas stemness genes (OCT4,SOX2 and Nanog) were found to be significantly downregulated after MS-275 treatment,this was further enhanced by AZ co-treatment. The significant reduction in initial tumorigenicity and subsequent abrogation upon serial xenografting suggests potential elimination of the NB CSC fraction. The significant potentiation of MS-275 by AZ is a promising therapeutic approach and one amenable for administration to patients given their current clinical utility.
View Publication
文献
P. A. Szabo et al. (FEB 2017)
Journal of immunology (Baltimore,Md. : 1950) 198 7 2805--2818
Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology.
Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells,we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4+ effector memory T (TEM) cells that secrete IL-17A,but not IFN-$\gamma$,was responsible for early IL-17A production. We found mouse TEM-17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP $\delta$ expression. Finally the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together our findings identify CD4+ TEM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic as opposed to protective role for IL-17A during Gram-positive bacterial infections. Accordingly the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses."
View Publication
文献
Tyagi RK et al. (FEB 2017)
Scientific reports 7 41083
Human IDO-competent, long-lived immunoregulatory dendritic cells induced by intracellular pathogen, and their fate in humanized mice.
Targeting of myeloid-dendritic cell receptor DC-SIGN by numerous chronic infectious agents,including Porphyromonas gingivalis,is shown to drive-differentiation of monocytes into dysfunctional mDCs. These mDCs exhibit alterations of their fine-tuned homeostatic function and contribute to dysregulated immune-responses. Here,we utilize P. gingivalis mutant strains to show that pathogen-differentiated mDCs from primary human-monocytes display anti-apoptotic profile,exhibited by elevated phosphorylated-Foxo1,phosphorylated-Akt1,and decreased Bim-expression. This results in an overall inhibition of DC-apoptosis. Direct stimulation of complex component CD40 on DCs leads to activation of Akt1,suggesting CD40 involvement in anti-apoptotic effects observed. Further,these DCs drove dampened CD8(+) T-cell and Th1/Th17 effector-responses while inducing CD25(+)Foxp3(+)CD127(-) Tregs. In vitro Treg induction was mediated by DC expression of indoleamine 2,3-dioxygenase,and was confirmed in IDO-KO mouse model. Pathogen-infected &CMFDA-labeled MoDCs long-lasting survival was confirmed in a huMoDC reconstituted humanized mice. In conclusion,our data implicate PDDCs as an important target for resolution of chronic infection.
View Publication
文献
Niu H et al. (MAR 2017)
Neuroscience Letters 642 71--76
Recombinant insulin-like growth factor binding protein-4 inhibits proliferation and promotes differentiation of neural progenitor cells
Insulin-like growth factor (IGF) is involved in regulating many processes during neural development,and IGF binding protein-4 (IGFBP4) functions as a modulator of IGF actions or in an IGF-independent manner (e.g.,via inhibiting Wnt/β-catenin signaling). In the present study,neural progenitor cells (NPCs) were isolated from the forebrain of newborn mice to investigate effects of IGFBP4 on the proliferation and differentiation of NPCs. The proliferation of NPCs was evaluated using Cell Counting Kit-8 (CCK-8) after treatment with or without IGFBP4 as well as blockers of IGF-IR and β-catenin. Phosphorylation levels of Akt,Erk1,2 and p38 were analyzed by Western blotting. The differentiation of NPCs was evaluated using immunofluorescence and Western blotting. It was shown that exogenous IGFBP4 significantly inhibited the proliferation of NPCs and it did not induce a more pronounced inhibition of cell proliferation after blockade of IGF-IR but it did after antagonism of β-catenin. Akt phosphorylation was significantly decreased and phosphorylation levels of Erk1,2 and p38 were not significantly changed in IGFBP4-treated NPCs. Excessive IGFBP4 significantly promoted NPCs to differentiate into astrocytes and neurons. These data suggested that exogenous IGFBP4 inhibits proliferation and promotes differentiation of neural progenitor cells mainly through IGF-IR signaling pathway.
View Publication
文献
Bell S et al. (MAR 2017)
Stem cells translational medicine 6 3 886--896
A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing.
The development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here,we illustrate a rapid,simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor. This platform includes a method to combine somatic cell reprogramming with CRISPR/Cas9 gene editing at single cell resolution,which enables the concurrent development of clonal knockout or knock-in models that can be used as isogenic control lines. This platform reduces the logistical barrier for using iPSC technology,allows for the development of appropriate control lines for use in rare neurodevelopmental disease research,and establishes a fundamental component to targeted therapeutics and precision medicine. Stem Cells Translational Medicine 2017;6:886-896.
View Publication
文献
Douaisi M et al. (FEB 2017)
Journal of immunology (Baltimore,Md. : 1950)
CD31, a Valuable Marker to Identify Early and Late Stages of T Cell Differentiation in the Human Thymus.
Although CD31 expression on human thymocytes has been reported,a detailed analysis of CD31 expression at various stages of T cell development in the human thymus is missing. In this study,we provide a global picture of the evolution of CD31 expression from the CD34(+) hematopoietic precursor to the CD45RA(+) mature CD4(+) and CD8(+) single-positive (SP) T cells. Using nine-color flow cytometry,we show that CD31 is highly expressed on CD34(+) progenitors and stays high until the early double-positive stage (CD3(-)CD4(+)CD8α(+)β(-)). After β-selection,CD31 expression levels become low to undetectable. CD31 expression then increases and peaks on CD3(high)CD4(+)CD8(+) double-positive thymocytes. However,following positive selection,CD31 expression differs dramatically between CD4(+) and CD8(+) lineages: homogeneously high on CD8 SP but lower or negative on CD4 SP cells,including a subset of CD45RA(+)CD31(-) mature CD4(+) thymocytes. CD31 expression on TCRγδ thymocytes is very similar to that of CD4 SP cells. Remarkably,there is a substantial subset of semimature (CD45RA(-)) CD4 SP thymocytes that lack CD31 expression. Moreover,FOXP3(+) and ICOS(+) cells are overrepresented in this CD31(-) subpopulation. Despite this CD31(-)CD45RA(-) subpopulation,most egress-capable mature CD45RA(+) CD4 SP thymocytes express CD31. The variations in CD31 expression appear to coincide with three major selection processes occurring during thymopoiesis: β-selection,positive selection,and negative selection. Considering the ability of CD31 to modulate the TCR's activation threshold via the recruitment of tyrosine phosphatases,our results suggest a significant role for CD31 during T cell development.
View Publication
文献
Sweeney CL et al. (FEB 2017)
Molecular therapy : the journal of the American Society of Gene Therapy 25 2 321--330
Targeted Repair of CYBB in X-CGD iPSCs Requires Retention of Intronic Sequences for Expression and Functional Correction.
X-linked chronic granulomatous disease (X-CGD) is an immune deficiency resulting from defective production of microbicidal reactive oxygen species (ROS) by phagocytes. Causative mutations occur throughout the CYBB gene,resulting in absent or defective gp91(phox) protein expression. To correct CYBB exon 5 mutations while retaining normal gene regulation,we utilized TALEN or Cas9 for exon 5 replacement in induced pluripotent stem cells (iPSCs) from patients,which restored gp91(phox) expression and ROS production in iPSC-derived granulocytes. Alternate approaches for correcting the majority of X-CGD mutations were assessed,involving TALEN- or Cas9-mediated insertion of CYBB minigenes at exon 1 or 2 of the CYBB locus. Targeted insertion of an exon 1-13 minigene into CYBB exon 1 resulted in no detectable gp91(phox) expression or ROS activity in iPSC-derived granulocytes. In contrast,targeted insertion of an exon 2-13 minigene into exon 2 restored both gp91(phox) and ROS activity. This demonstrates the efficacy of two correction strategies: seamless repair of specific CYBB mutations by exon replacement or targeted insertion of an exon 2-13 minigene to CYBB exon 2 while retaining exon/intron 1. Furthermore,it highlights a key issue for targeted insertion strategies for expression from an endogenous promoter: retention of intronic elements can be necessary for expression.
View Publication
文献
Bagó et al. (FEB 2017)
Science Translational Medicine 9 375 eaah6510
Tumor-homing cytotoxic human induced neural stem cells for cancer therapy
Engineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSC(TE)),engineered them to express optical reporters and different therapeutic gene products,and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSC(TE) in patient-derived GBM models of surgical and nonsurgical disease. Molecular and functional analysis revealed that our single-factor SOX2 TD strategy converted human skin fibroblasts into h-iNSC(TE) that were nestin(+) and expressed pathways associated with tumor-homing migration in 4 days. Time-lapse motion analysis showed that h-iNSC(TE) rapidly migrated to human GBM cells and penetrated human GBM spheroids,a process inhibited by blockade of CXCR4. Serial imaging showed that h-iNSC(TE) delivery of the proapoptotic agent tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) reduced the size of solid human GBM xenografts 250-fold in 3 weeks and prolonged median survival from 22 to 49 days. Additionally,h-iNSC(TE) thymidine kinase/ganciclovir enzyme/prodrug therapy (h-iNSC(TE)-TK) reduced the size of patient-derived GBM xenografts 20-fold and extended survival from 32 to 62 days. Mimicking clinical NSC therapy,h-iNSC(TE)-TK therapy delivered into the postoperative surgical resection cavity delayed the regrowth of residual GBMs threefold and prolonged survival from 46 to 60 days. These results suggest that TD of human skin into h-iNSC(TE) is a platform for creating tumor-homing cytotoxic cell therapies for cancer,where the potential to avoid carrier rejection could maximize treatment durability in human trials.
View Publication
文献
Ma S et al. (JAN 2017)
Molecular and Cellular Biology MCB.00492--16
L2hgdh deficiency accumulates L-2-hydroxyglutarate with progressive leukoencephalopathy and neurodegeneration
L-2-hydroxyglutarate aciduria (L-2-HGA) is an autosomal recessive neurometabolic disorder caused by a mutation in the L-2-hydroxyglutarate dehydrogenase ( L2HGDH ) gene. In this study,we generated L2hgdh knockout (KO) mice and observed a robust increase of 2-hydroxyglutarate (L-2-HG) levels in multiple tissues. The highest levels of L-2-HG were observed in the brain and testis with a corresponding increase in histone methylation in these tissues. L2hgdh KO mice exhibit white matter abnormalities,extensive gliosis,microglia-mediated neuroinflammation,and an expansion of oligodendrocyte progenitor cells (OPCs). Moreover,L2hgdh deficiency leads to impaired adult hippocampal neurogenesis and late-onset neurodegeneration in mouse brains. Our data provide in vivo evidence that L2hgdh mutation leads to L-2-HG accumulation,leukoencephalopathy,and neurodegeneration in mice,thus offering new insights into the pathophysiology of L-2-HGA in humans.
View Publication
文献
Qu Y et al. (FEB 2017)
Stem cell reports 8 2 205--215
Differentiation of Human Induced Pluripotent Stem Cells to Mammary-like Organoids.
Human induced pluripotent stem cells (iPSCs) can give rise to multiple cell types and hold great promise in regenerative medicine and disease-modeling applications. We have developed a reliable two-step protocol to generate human mammary-like organoids from iPSCs. Non-neural ectoderm-cell-containing spheres,referred to as mEBs,were first differentiated and enriched from iPSCs using MammoCult medium. Gene expression profile analysis suggested that mammary gland function-associated signaling pathways were hallmarks of 10-day differentiated mEBs. We then generated mammary-like organoids from 10-day mEBs using 3D floating mixed gel culture and a three-stage differentiation procedure. These organoids expressed common breast tissue,luminal,and basal markers,including estrogen receptor,and could be induced to produce milk protein. These results demonstrate that human iPSCs can be directed in vitro toward mammary lineage differentiation. Our findings provide an iPSC-based model for studying regulation of normal mammary cell fate and function as well as breast disease development.
View Publication
文献
E. Gabriel et al. (JAN 2017)
Cell stem cell 20 3 397--406.e5
Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids.
The recent Zika virus (ZIKV) epidemic is associated with microcephaly in newborns. Although the connection between ZIKV and neurodevelopmental defects is widely recognized,the underlying mechanisms are poorly understood. Here we show that two recently isolated strains of ZIKV,an American strain from an infected fetal brain (FB-GWUH-2016) and a closely-related Asian strain (H/PF/2013),productively infect human iPSC-derived brain organoids. Both of these strains readily target to and replicate in proliferating ventricular zone (VZ) apical progenitors. The main phenotypic effect was premature differentiation of neural progenitors associated with centrosome perturbation,even during early stages of infection,leading to progenitor depletion,disruption of the VZ,impaired neurogenesis,and cortical thinning. The infection pattern and cellular outcome differ from those seen with the extensively passaged ZIKV strain MR766. The structural changes we see after infection with these more recently isolated viral strains closely resemble those seen in ZIKV-associated microcephaly.
View Publication