van Besien K et al. (JUN 2016)
Leukemia & lymphoma 0 0 1--10
Cord blood chimerism and relapse after haplo-cord transplantation.
Haplo-cord stem cell transplantation combines the infusion of CD34 selected hematopoietic progenitors from a haplo-identical donor with an umbilical cord blood (UCB) graft from an unrelated donor and allows faster count recovery,with low rates of disease recurrence and chronic graft-versus-host disease (GVHD). But the contribution of the umbilical cord blood graft to long-term transplant outcome remains unclear. We analyzed 39 recipients of haplo-cord transplants with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS),engrafted and in remission at 2 months. Median age was 66 (18-72) and all had intermediate,high,or very-high risk disease. Less than 20% UCB chimerism in the CD33 lineage was associated with an increased rate of disease recurrence (54% versus 11% p textless 0.0001) and decrease in one year progression-free (20% versus 55%,p = 0.004) and overall survival (30% versus 62%,p = 0.02). Less than 100% UCB chimerism in the CD3 lineage was associated with increase rate of disease recurrence (46% versus 12%,p = 0.007). Persistent haplo-chimerism in the CD3 lineage was associated with an increased rate of disease recurrence (40% versus 15%,p = 0.009) Chimerism did not predict for treatment related mortality. The cumulative incidence of acute GVHD by day 100 was 43%. The cumulative incidence of moderate/severe chronic GVHD was only 5%. Engraftment of the umbilical cord blood grafts provides powerful graft-versus-leukemia (GVL) effects which protect against disease recurrence and is associated with low risk of chronic GVHD. Engraftment of CD34 selected haplo-identical cells can lead to rapid development of circulating T-cells,but when these cells dominate,GVL-effects are limited and rates of disease recurrence are high.
View Publication
文献
Palmer DJ et al. (JUN 2016)
Molecular Therapy — Methods & Clinical Development 3 April 16039
Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector
Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells,especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report,we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3' untranslated region of the expression cassette in the HDAd. Thus during vector production,when the producer cells are coinfected with both the helper virus (HV) and the HDAd,the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified,transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds.
View Publication
文献
Lichtmannegger J et al. (JUN 2016)
Journal of Clinical Investigation 126 7 2721--2735
Methanobactin reverses acute liver failure in a rat model of Wilson disease.
In Wilson disease (WD),functional loss of ATPase copper-transporting $$ (ATP7B) impairs biliary copper excretion,leading to excessive copper accumulation in the liver and fulminant hepatitis. Current US Food and Drug Administration- and European Medicines Agency-approved pharmacological treatments usually fail to restore copper homeostasis in patients with WD who have progressed to acute liver failure,leaving liver transplantation as the only viable treatment option. Here,we investigated the therapeutic utility of methanobactin (MB),a peptide produced by Methylosinus trichosporium OB3b,which has an exceptionally high affinity for copper. We demonstrated that ATP7B-deficient rats recapitulate WD-associated phenotypes,including hepatic copper accumulation,liver damage,and mitochondrial impairment. Short-term treatment of these rats with MB efficiently reversed mitochondrial impairment and liver damage in the acute stages of liver copper accumulation compared with that seen in untreated ATP7B-deficient rats. This beneficial effect was associated with depletion of copper from hepatocyte mitochondria. Moreover,MB treatment prevented hepatocyte death,subsequent liver failure,and death in the rodent model. These results suggest that MB has potential as a therapeutic agent for the treatment of acute WD.
View Publication
文献
Zhou S et al. (JUN 2016)
Differentiation; research in biological diversity 1--12
The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF
Neural rosettes derived from human induced pluripotent stem cells (iPSCs) have been claimed to be a highly robust in vitro cellular model for biomedical application. They are able to propagate in vitro in the presence of mitogens,including basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). However,these two mitogens are also involved in anterior-posterior patterning in a gradient dependent manner along the neural tube axis. Here,we compared the regional identity of neural rosette cells and specific neural subtypes of their progeny propagated with low and high concentrations of bFGF and EGF. We observed that low concentrations of bFGF and EGF in the culturing system were able to induce forebrain identity of the neural rosettes and promote subsequent cortical neuronal differentiation. On the contrary,high concentrations of these mitogens stimulate a mid-hindbrain fate of the neural rosettes,resulting in subsequent cholinergic neuron differentiation. Thus,our results indicate that different concentrations of bFGF and EGF supplemented during propagation of neural rosettes are involved in altering the identity of the resultant neural cells.
View Publication
文献
Rigamonti A et al. (JUN 2016)
Stem Cell Reports 6 6 993--1008
Large-scale production of mature neurons from human pluripotent stem cells in a three-dimensional suspension culture system
Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body,including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system,provides a platform for the screening of chemical libraries that affect these processes,and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However,defining protocols that permit a large number and high yield of neurons has proved difficult. We present differentiation protocols for the generation of distinct subtypes of neurons in a highly reproducible manner,with minimal experiment-to-experiment variation. These neurons form synapses with neighboring cells,exhibit spontaneous electrical activity,and respond appropriately to depolarization. hPSC-derived neurons exhibit a high degree of maturation and survive in culture for up to 4-5 months,even without astrocyte feeder layers.
View Publication
文献
Ciampi O et al. (JUN 2016)
Stem Cell Research 17 1 130--139
Generation of functional podocytes from human induced pluripotent stem cells
Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here,we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol,which induced their differentiation into intermediate mesoderm,then into nephron progenitors and,finally,into mature podocytes. After differentiation,cells expressed the main podocyte markers,such as synaptopodin,WT1,α-Actinin-4,P-cadherin and nephrin at the protein and mRNA level,and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall,these findings demonstrate the establishment of a robust protocol that,mimicking developmental stages,makes it possible to derive functional podocytes in vitro.
View Publication
文献
Li P et al. (JUL 2016)
Nature medicine 22 7 807--11
Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation.
The persistence of latent HIV proviruses in long-lived CD4(+) T cells despite antiretroviral therapy (ART) is a major obstacle to viral eradication. Because current candidate latency-reversing agents (LRAs) induce HIV transcription,but fail to clear these cellular reservoirs,new approaches for killing these reactivated latent HIV reservoir cells are urgently needed. HIV latency depends upon the transcriptional quiescence of the integrated provirus and the circumvention of immune defense mechanisms. These defenses include cell-intrinsic innate responses that use pattern-recognition receptors (PRRs) to detect viral pathogens,and that subsequently induce apoptosis of the infected cell. Retinoic acid (RA)-inducible gene I (RIG-I,encoded by DDX58) forms one class of PRRs that mediates apoptosis and the elimination of infected cells after recognition of viral RNA. Here we show that acitretin,an RA derivative approved by the US Food and Drug Administration (FDA),enhances RIG-I signaling ex vivo,increases HIV transcription,and induces preferential apoptosis of HIV-infected cells. These effects are abrogated by DDX58 knockdown. Acitretin also decreases proviral DNA levels in CD4(+) T cells from HIV-positive subjects on suppressive ART,an effect that is amplified when combined with suberoylanilide hydroxamic acid (SAHA),a histone deacetylase inhibitor. Pharmacological enhancement of an innate cellular-defense network could provide a means by which to eliminate reactivated cells in the latent HIV reservoir.
View Publication
文献
Du C et al. (JUN 2016)
Advanced healthcare materials 5 16 2080--2091
Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds
Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However,the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues,decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering,using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells. To demonstrate ECM-guided cellular assembly,the present work is focused on generating the functional unit of the kidney,the glomerulus. In the repopulated organ,the presence of endothelial cells broadly upregulates the expression level of genes related to renal development. When the cellularized native scaffolds are implanted in SCID mice,glomeruli assembly can be achieved by co-culture of the renal progenitors and endothelial cells. These individual glomerular units are shown to be functional in the context of the whole organ using a simulated bio-reactor set-up with urea and creatinine excretion and albumin reabsorption. Our results indicate that the repopulation of decellularized native kidney using clinically relevant,expandable patient-specific renal progenitors and endothelial cells may be a viable approach for the generation of a functional whole kidney.
View Publication
文献
Niu X et al. (JUN 2016)
Journal of Biological Chemistry 291 32 16576--16585
Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in ??-thalassemia-induced pluripotent stem sells
$$-Thalassemia ($$-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific $$-Thal-induced pluripotent stem cells (iPSCs),correction of the disease-causing mutations in those cells,and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here,we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin $$ (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in $$-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction,we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally,whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore,the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in $$-Thal iPSCs.
View Publication
文献
Koshkin V et al. (JUN 2016)
Journal of cellular biochemistry
Preservation of the 3D Phenotype Upon Dispersal of Cultured Cell Spheroids into Monolayer Cultures.
In functional cytometric studies,cultured cells are exposed to effectors (e.g. drugs),and the heterogeneity of cell responses are studied using cytometry techniques (e.g. image cytometry). Such studies are difficult to perform on 3D cell cultures. A solution is to disperse 3D clusters and transfer the cells to the 2D state before applying effectors and using cytometry. This approach requires that the lifetime of the 3D phenotype be longer than the duration of the experiment. Here we studied the dynamics of phenotype transformation from 3D to 2D and searched for means of slowing this transformation down in dispersed spheroids of MCF7 cells. We found three functional biomarkers of the 3D phenotype in MCF7 cell spheroids that are absent in the 2D cell culture: (i) the presence of a subpopulation with an elevated drug-expelling capacity,(ii) the presence of a subpopulation with an elevated cytoprotective capacity and (iii) the accumulation of cells in the G1 phase of the cell cycle. Monitoring these biomarkers in cells transferred from the 3D state to the 2D state revealed their gradual extinction. We found that the combined application of an elevated cell density and thiol-containing medium supplements increased the lifetime of the 3D phenotype by several fold to as long as 96 h. Our results suggest that extending the lifetime of the 3D phenotype in the cells transferred from the 3D state to the 2D state can facilitate detailed functional cytometric studies,such as measurements of population heterogeneity of cytotoxicity,chemosensitivity and radiosensitivity. This article is protected by copyright. All rights reserved.
View Publication
文献
Zheng X et al. (JUN 2016)
eLife 5 JUN2016
Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation.
How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression,together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1,marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC,transcriptional activators of the HK2 and LDHA genes,decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death,indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes,whose levels are unchanged compared to NPCs,revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth,indicating an unknown mechanism linking mitochondrial biogenesis to cell size.
View Publication
文献
Hyslop LA et al. (JUN 2016)
Nature 534 7607 383--386
Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease.
Mitochondrial DNA (mtDNA) mutations are maternally inherited and are associated with a broad range of debilitating and fatal diseases. Reproductive technologies designed to uncouple the inheritance of mtDNA from nuclear DNA may enable affected women to have a genetically related child with a greatly reduced risk of mtDNA disease. Here we report the first preclinical studies on pronuclear transplantation (PNT). Surprisingly,techniques used in proof-of-concept studies involving abnormally fertilized human zygotes were not well tolerated by normally fertilized zygotes. We have therefore developed an alternative approach based on transplanting pronuclei shortly after completion of meiosis rather than shortly before the first mitotic division. This promotes efficient development to the blastocyst stage with no detectable effect on aneuploidy or gene expression. After optimization,mtDNA carryover was reduced to textless2% in the majority (79%) of PNT blastocysts. The importance of reducing carryover to the lowest possible levels is highlighted by a progressive increase in heteroplasmy in a stem cell line derived from a PNT blastocyst with 4% mtDNA carryover. We conclude that PNT has the potential to reduce the risk of mtDNA disease,but it may not guarantee prevention.
View Publication