Lee-Chang C et al. (APR 2016)
Journal of Immunology 196 8 3385--97
Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.
B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article,we report that these cells,termed 4BL cells,are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result,activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus,for the first time,to our knowledge,these results indicate that aging affects the function of B1a cells. Upon aging,these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells.
View Publication
文献
Carlson AL et al. ( 2016)
Nature communications 7 10862
Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds.
Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries,but reprogrammed neurons are dissociated and spatially disorganized during transplantation,rendering poor cell survival,functionality and engraftment in vivo. Here,we present the design of three-dimensional (3D) microtopographic scaffolds,using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming,neural network establishment and support neuronal engraftment into the brain. Scaffold-supported,reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices,showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells,and allowed delivery of multiple neuronal subtypes. Thus,3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance.
View Publication
文献
Chamma I et al. (MAR 2016)
Nature Communications 7 10773
Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin
The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short,enzymatically biotinylated tag,compatible with SRI techniques including uPAINT,STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues,with reduced steric hindrance and no crosslinking compared with multivalent probes. We use mSA to decipher the dynamics and nanoscale organization of the synaptic adhesion molecules neurexin-1β,neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2) in a dual-colour configuration with GFP nanobody,and show that these proteins are diffusionally trapped at synapses where they form apposed trans-synaptic adhesive structures. Furthermore,Nlg1 is dynamic,disperse and sensitive to synaptic stimulation,whereas LRRTM2 is organized in compact and stable nanodomains. Thus,mSA is a versatile tool to image membrane proteins at high resolution in complex live environments,providing novel information about the nano-organization of biological structures.
View Publication
文献
El-Far M et al. (MAR 2016)
Scientific Reports 6 22902
Proinflammatory isoforms of IL-32 as novel and robust biomarkers for control failure in HIV-infected slow progressors.
HIV-infected slow progressors (SP) represent a heterogeneous group of subjects who spontaneously control HIV infection without treatment for several years while showing moderate signs of disease progression. Under conditions that remain poorly understood,a subgroup of these subjects experience failure of spontaneous immunological and virological control. Here we determined the frequency of SP subjects who showed loss of HIV control within our Canadian Cohort of HIV(+) Slow Progressors and identified the proinflammatory cytokine IL-32 as a robust biomarker for control failure. Plasmatic levels of the proinflammatory isoforms of IL-32 (mainly β and γ) at earlier clinic visits positively correlated with the decline of CD4 T-cell counts,increased viral load,lower CD4/CD8 ratio and levels of inflammatory markers (sCD14 and IL-6) at later clinic visits. We present here a proof-of-concept for the use of IL-32 as a predictive biomarker for disease progression in SP subjects and identify IL-32 as a potential therapeutic target.
View Publication
文献
Wang Z et al. ( 2016)
PLoS ONE 11 3 e0150731
Immunological properties of corneal epithelial-like cells derived from human embryonic stem cells
Transplantation of ex vivo expanded corneal limbal stem cells (LSCs) has been the main treatment for limbal stem cell deficiency,although the shortage of donor corneal tissues remains a major concern for its wide application. Due to the development of tissue engineering,embryonic stem cells (ESCs)-derived corneal epithelial-like cells (ESC-CECs) become a new direction for this issue. However,the immunogenicity of ESC-CECs is a critical matter to be solved. In the present study,we explored the immunological properties of ESC-CECs,which were differentiated from ESCs. The results showed that ESC-CECs had a similar character and function with LSCs both in vitro and in vivo. In ESC-CECs,a large number of genes related with immune response were down-regulated. The expressions of MHC-I,MHC-II,and co-stimulatory molecules were low,but the expression of HLA-G was high. The ESC-CECs were less responsible for T cell proliferation and NK cell lysis in vitro,and there was less immune cell infiltration after transplantation in vivo compared with LSCs. Moreover,the immunological properties were not affected by interferon-$$. All these results indicated a low immunogenicity of ESC-CECs,and they can be promising in clinical use.
View Publication
文献
Serr I et al. (MAR 2016)
Nature Communications 7 10991
Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice.
Immune tolerance is executed partly by Foxp3(+)regulatory T (Treg) cells,which suppress autoreactive T cells. In autoimmune type 1 diabetes (T1D) impaired tolerance promotes destruction of insulin-producing β-cells. The development of autoantigen-specific vaccination strategies for Foxp3(+)Treg-induction and prevention of islet autoimmunity in patients is still in its infancy. Here,using human haematopoietic stem cell-engrafted NSG-HLA-DQ8 transgenic mice,we provide direct evidence for human autoantigen-specific Foxp3(+)Treg-induction in vivo. We identify HLA-DQ8-restricted insulin-specific CD4(+)T cells and demonstrate efficient human insulin-specific Foxp3(+)Treg-induction upon subimmunogenic vaccination with strong agonistic insulin mimetopes in vivo. Induced human Tregs are stable,show increased expression of Treg signature genes such as Foxp3,CTLA4,IL-2Rα and TIGIT and can efficiently suppress effector T cells. Such Foxp3(+)Treg-induction does not trigger any effector T cells. These T1D vaccine candidates could therefore represent an expedient improvement in the challenge to induce human Foxp3(+)Tregs and to develop novel precision medicines for prevention of islet autoimmunity in children at risk of T1D.
View Publication
文献
Mandegar MA et al. (APR 2016)
Cell Stem Cell 18 4 541--553
CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs
Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function,developmental pathways,and disease mechanisms. Here,we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi,in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain,can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors,cardiomyocytes,and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn),CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types,dissect developmental pathways,and model disease.
View Publication
Water-in-Water Droplets by Passive Microfluidic Flow Focusing.
We present a simple microfluidic system that generates water-in-water,aqueous two phase system (ATPS) droplets,by passive flow focusing. ATPS droplet formation is achieved by applying weak hydrostatic pressures,with liquid-filled pipette tips as fluid columns at the inlets,to introduce low speed flows to the flow focusing junction. To control the size of the droplets,we systematically vary the interfacial tension and viscosity of the ATPS fluids and adjust the fluid column height at the fluid inlets. The size of the droplets scales with a power law of the ratio of viscous stresses in the two ATPS phases. Overall,we find a drop size coefficient of variation (CV; i.e.,polydispersity) of about 10%. We also find that when drops form very close to the flow focusing junction,the drops have a CV of less than 1%. Our droplet generation method is easily scalable: we demonstrate a parallel system that generates droplets simultaneously and improves the droplet production rate by up to one order of magnitude. Finally,we show the potential application of our system for encapsulating cells in water-in-water emulsions by encapsulating microparticles and cells. To the best of our knowledge,our microfluidic technique is the first that forms low interfacial tension ATPS droplets without applying external perturbations. We anticipate that this simple approach will find utility in drug and cell delivery applications because of the all-biocompatible nature of the water-in-water ATPS environment.
View Publication
文献
Flach A-C et al. (MAR 2016)
Proceedings of the National Academy of Sciences of the United States of America 113 12 3323--8
Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease.
Multiple sclerosis (MS) is caused by T cells that are reactive for brain antigens. In experimental autoimmune encephalomyelitis,the animal model for MS,myelin-reactive T cells initiate the autoimmune process when entering the nervous tissue and become reactivated upon local encounter of their cognate CNS antigen. Thereby,the strength of the T-cellular reactivation process within the CNS tissue is crucial for the manifestation and the severity of the clinical disease. Recently,B cells were found to participate in the pathogenesis of CNS autoimmunity,with several diverse underlying mechanisms being under discussion. We here report that B cells play an important role in promoting the initiation process of CNS autoimmunity. Myelin-specific antibodies produced by autoreactive B cells after activation in the periphery diffused into the CNS together with the first invading pathogenic T cells. The antibodies accumulated in resident antigen-presenting phagocytes and significantly enhanced the activation of the incoming effector T cells. The ensuing strong blood-brain barrier disruption and immune cell recruitment resulted in rapid manifestation of clinical disease. Therefore,myelin oligodendrocyte glycoprotein (MOG)-specific autoantibodies can initiate disease bouts by cooperating with the autoreactive T cells in helping them to recognize their autoantigen and become efficiently reactivated within the immune-deprived nervous tissue.
View Publication
文献
Friedel T et al. (MAR 2016)
Stem cells and development 25 9 729--39
CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification.
Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4high cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation,efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved,while retaining their pluripotency. When added during the reprogramming process,CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus,CD30-LV may serve as novel tool for the selective gene transfer into pluripotent stem cells with broad applications in basic and therapeutic research.
View Publication
文献
Guo G et al. (FEB 2016)
Stem Cell Reports 6 4 437--446
Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass
Conventional generation of stem cells from human blastocysts produces a developmentally advanced,or primed,stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However,whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here,we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration,global gene expression,and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals.
View Publication
文献
Qin H et al. (MAR 2016)
Cell reports 14 10 2301--2312
YAP Induces Human Naive Pluripotency.
The human naive pluripotent stem cell (PSC) state,corresponding to a pre-implantation stage of development,has been difficult to capture and sustain in vitro. We report that the Hippo pathway effector YAP is nuclearly localized in the inner cell mass of human blastocysts. Overexpression of YAP in human embryonic stem cells (ESCs) and induced PSCs (iPSCs) promotes the generation of naive PSCs. Lysophosphatidic acid (LPA) can partially substitute for YAP to generate transgene-free human naive PSCs. YAP- or LPA-induced naive PSCs have a rapid clonal growth rate,a normal karyotype,the ability to form teratomas,transcriptional similarities to human pre-implantation embryos,reduced heterochromatin levels,and other hallmarks of the naive state. YAP/LPA act in part by suppressing differentiation-inducing effects of GSK3 inhibition. CRISPR/Cas9-generated YAP-/- cells have an impaired ability to form colonies in naive but not primed conditions. These results uncover an unexpected role for YAP in the human naive state,with implications for early human embryology.
View Publication