Liu H et al. ( 2016)
Stem Cells International 2016 2524092
Resveratrol enhances cardiomyocyte differentiation of human induced pluripotent stem cells through inhibiting canonical wnt signal pathway and enhancing serum response factor-mir-1 axis
Resveratrol (trans-3,5,4'-trihydroxystilbene) (RSV) is a natural polyphenol with protective effects over cardiac tissues and can affect cell survival and differentiation in cardiac stem cells transplantation. However,whether this agent can affect cardiomyocytes (CMs) differentiation of induced pluripotent stem cells (iPSCs) is not yet clear. This study explored whether RSV can affect CMs differentiation of human iPSCs. Under embryoid bodies (EBs) condition,the effect of RSV on the change of pluripotent markers,endoderm markers,mesoderm markers,and ectoderm markers was measured using qRT-PCR. Under CM differentiation culture,the effect of RSV on CM specific markers was also measured. The regulative role of RSV over canonical Wnt signal pathway and serum response factor- (SRF-) miR-1 axis and the functions of these two axes were further studied. Results showed that RSV had no effect on the self-renewal of human iPSCs but could promote mesoderm differentiation. Under CM differentiation culture,RSV could promote CM differentiation of human iPSCs through suppressing canonical Wnt signal pathway and enhancing SRF-miR-1 axis.
View Publication
文献
Wang J et al. (FEB 2016)
Nature protocols 11 2 327--46
Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression.
The ability to derive and stably maintain ground-state human pluripotent stem cells (hPSCs) that resemble the cells seen in vivo in the inner cell mass has the potential to be an invaluable tool for researchers developing stem cell-based therapies. To date,derivation of human naive-like pluripotent stem cell lines has been limited to a small number of lineages,and their long-term culturing remains problematic. We describe a protocol for genetic and phenotypic tagging,selecting and maintaining naive-like hPSCs. We tag hPSCs by GFP,expressed by the long terminal repeat (LTR7) of HERVH endogenous retrovirus. This simple and efficient protocol has been reproduced with multiple hPSC lines,including embryonic and induced pluripotent stem cells,and it takes ∼6 weeks. By using the reporter,homogeneous hPSC cultures can be derived,characterized and maintained for the long term by repeated re-sorting and re-plating steps. The HERVH-expressing cells have a similar,but nonidentical,expression pattern to other naive-like cells,suggesting that alternative pluripotent states might exist.
View Publication
文献
Fuller HR et al. (JAN 2015)
Frontiers in cellular neuroscience 9 January 506
Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development.
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons,and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts,whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably,UBA1 was significantly decreased in SMA motor neurons,supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons,including beta III-tubulin and UCHL1,were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts,highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons,and for the identification of novel biomarker and therapeutic targets for SMA.
View Publication
文献
Li C-S et al. (MAR 2016)
Biomaterials 83 194--206
Fibromodulin reprogrammed cells: A novel cell source for bone regeneration.
Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However,currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability,painful and invasive cell-harvesting procedures,and tumorigenesis. Previously,we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan,fibromodulin (FMOD),circumventing gene transduction. In this study,we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect,contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence,engraftment,and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together,we have provided an extended potency,safety,and molecular profile of FReP cell-based bone regeneration. Therefore,FReP cells present a high potential for cellular and gene therapy products for bone regeneration.
View Publication
文献
Wang H et al. (APR 2016)
The Journal of biological chemistry 291 16 8644--8652
Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells.
Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however,the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF),an orphan nuclear receptor,in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes,GCNF down-regulated 36% of the genes,and up-regulated 64% in undifferentiated hES cells. In addition,GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process.
View Publication
文献
Ito N et al. (APR 2016)
Disease models & mechanisms 9 4 451--462
Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells.
X-linked dystonia-parkinsonism (XDP) is a hereditary neurodegenerative disorder involving a progressive loss of striatal medium spiny neurons. The mechanisms underlying neurodegeneration are not known,in part because there have been few cellular models available for studying the disease. The XDP haplotype consists of multiple sequence variations in a region of the X chromosome containingTAF1,a large gene with at least 38 exons,and a multiple transcript system (MTS) composed of five unconventional exons. A previous study identified an XDP-specific insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon in intron 32 ofTAF1,as well as a neural-specific TAF1 isoform,N-TAF1,which showed decreased expression in post-mortem XDP brain compared with control tissue. Here,we generated XDP patient and control fibroblasts and induced pluripotent stem cells (iPSCs) in order to further probe cellular defects associated with this disease. As initial validation of the model,we compared expression ofTAF1and MTS transcripts in XDP versus control fibroblasts and iPSC-derived neural stem cells (NSCs). Compared with control cells,XDP fibroblasts exhibited decreased expression ofTAF1transcript fragments derived from exons 32-36,a region spanning the SVA insertion site. N-TAF1,which incorporates an alternative exon (exon 34'),was not expressed in fibroblasts,but was detectable in iPSC-differentiated NSCs at levels that were ∼threefold lower in XDP cells than in controls. These results support the previous findings that N-TAF1 expression is impaired in XDP,but additionally indicate that this aberrant transcription might occur in neural cells at relatively early stages of development that precede neurodegeneration.
View Publication
文献
Hsiao C et al. (MAY 2016)
Biotechnology Journal 11 5 662--675
Human pluripotent stem cell culture density modulates YAP signaling
Human pluripotent stem cell (hPSC) density is an important factor in self-renewal and differentiation fates; however,the mechanisms through which hPSCs sense cell density and process this information in making cell fate decisions remain to be fully understood. One particular pathway that may prove important in density-dependent signaling in hPSCs is the Hippo pathway,which is regulated by cell-cell contact and mechanosensing through the cytoskeleton and has been linked to the maintenance of stem cell pluripotency. To probe regulation of Hippo pathway activity in hPSCs,we assessed whether Hippo pathway transcriptional activator YAP was differentially modulated by cell density. At higher cell densities,YAP phosphorylation and localization to the cytoplasm increased,which led to decreased YAP-mediated transcriptional activity. Furthermore,total YAP protein levels diminished at high cell density due to the phosphorylation-targeted degradation of YAP. Inducible shRNA knockdown of YAP reduced expression of YAP target genes and pluripotency genes. Finally,the density-dependent increase of neuroepithelial cell differentiation was mitigated by shRNA knockdown of YAP. Our results suggest a pivotal role of YAP in cell density-mediated fate decisions in hPSCs.
View Publication
文献
Prabhu VV et al. (APR 2016)
Cancer research 76 7 1989--1999
Small-Molecule Prodigiosin Restores p53 Tumor Suppressor Activity in Chemoresistant Colorectal Cancer Stem Cells via c-Jun-Mediated $$Np73 Inhibition and p73 Activation.
Tumor suppressor p53 is frequently mutated or inactivated in colorectal cancer. In contrast,p53 family member p73 is rarely mutated in colorectal cancer and p73 activation elicits p53-like tumor suppression. Colorectal cancer stem cells (CRCSC) comprise a rare self-renewing subpopulation that contributes to tumor maintenance and chemoresistance. p53 restoration is known to target CRCSCs,but p73 restoration in CRCSCs has not been examined. In this study,we investigated the effects of the small-molecule prodigiosin,which restores the p53 pathway in tumor cells via p73 activation,on CRCSCs in vitro and in vivo Prodigiosin prevented colonosphere formation independent of p53 status and reduced the viability of self-renewing,5-fluorouracil-resistant Aldefluor positive [Aldefluor(+)] CRCSCs in vitro Furthermore,prodigiosin inhibited the growth of xenograft tumors initiated with Aldefluor+ cells without toxic effects and limited the tumorigenic potential of these cells. Consistently,prodigiosin induced activation of a p53-responsive luciferase reporter in colonospheres,Aldefluor(+) cells,and tumor xenografts. Mechanistic studies revealed that prodigiosin increased the levels of p73 and reduced levels of the oncogenic N-terminally truncated isoform $$Np73 in Aldefluor(+) cells. Accordingly,p73 knockdown or $$Np73 overexpression suppressed prodigiosin-mediated inhibition of colonosphere formation. Moreover,prodigiosin increased levels of the transcription factor c-Jun,a regulator of p73 and $$Np73,in both the cytoplasm and nucleus. c-Jun knockdown attenuated prodigiosin-mediated p53-reporter activation,$$Np73 downregulation,p73 activation,and cell death. Collectively,our findings highlight the previously uncharacterized use of p73-activating therapeutics to target CRCSCs. Cancer Res; 76(7); 1989-99. textcopyright2016 AACR.
View Publication
文献
Nie Z et al. (FEB 2016)
Acta biochimica et biophysica Sinica 48 2 194--201
Transforming growth factor-beta increases breast cancer stem cell population partially through upregulating PMEPA1 expression.
The prostate transmembrane protein,androgen-induced 1 (PMEPA1) has been previously shown to promote solid malignancies in a variety of cancers,but the role and mechanisms of PMEPA1 in breast cancer has not been fully addressed. Here,we found that PMEPA1 was upregulated in breast cancer cell lines as well as in a set of clinical invasive breast ductal carcinomas. Interestingly,depletion of PMEPA1 decreased breast cancer stem cell (CSC)-enriched populations,while ectopic overexpression of PMEPA1 increased breast CSC-enriched populations. Furthermore,transforming growth factor-$$ (TGF-$$) treatment was also found to upregulate PMEPA1 expression and the CSC-enriched populations in triple-negative breast cancer cell lines. TGF-$$-induced PMEPA1 expression partially contributed to TGF-$$-induced breast CSC maintenance. These findings suggest that TGF-$$-PMEPA1 axis might provide new diagnosis and therapeutic targets for breast cancer treatment.
View Publication
文献
Yan H-J et al. (JAN 2016)
Experimental Cell Research 340 2 227--237
The effects of LSD1 inhibition on self-renewal and differentiation of human induced pluripotent stem cells
Human induced pluripotent stem cells (hiPSCs) are capable of unlimited self-renewal and can generate nearly all cells in the body. Changes induced by different LSD1 activities on the regulation of hiPSC self-renewal and differentiation and the mechanism underlying such changes were determined. We used two different LSD1 inhibitors (phenelzine sulfate and tranylcypromine) and RNAi technique to inhibit LSD1 activity,and we obtained hiPSCs showing 71.3%,53.28%,and 31.33% of the LSD1 activity in normal hiPSCs. The cells still maintained satisfactory self-renewal capacity when LSD1 activity was at 71.3%. The growth rate of hiPSCs decreased and cells differentiated when LSD1 activity was at approximately 53.28%. The hiPSCs were mainly arrested in the G0/G1 phase and simultaneously differentiated into endodermal tissue when LSD1 activity was at 31.33%. Teratoma experiments showed that the downregulation of LSD1 resulted in low teratoma volume. When LSD1 activity was below 50%,pluripotency of hiPSCs was impaired,and the teratomas mainly comprised endodermal and mesodermal tissues. This phenomenon was achieved by regulating the critical balance between histone methylation and demethylation at regulatory regions of several key pluripotent and developmental genes.
View Publication
文献
Zhong H et al. (JAN 2016)
Cancer research 76 2 480--490
A Novel IL6 Antibody Sensitizes Multiple Tumor Types to Chemotherapy Including Trastuzumab-Resistant Tumors.
Elevated levels of the proinflammatory cytokine IL6 are associated with poor survival outcomes in many cancers. Antibodies targeting IL6 and its receptor have been developed for chronic inflammatory disease,but they have not yet been shown to clearly benefit cancer patients,possibly due to antibody potency or the settings in which they have been tested. In this study,we describe the development of a novel high-affinity anti-IL6 antibody,MEDI5117,which features an extended half-life and potent inhibitory effects on IL6 biologic activity. MEDI5117 inhibited IL6-mediated activation of STAT3,suppressing the growth of several tumor types driven by IL6 autocrine signaling. In the same models,MEDI5117 displayed superior preclinical activity relative to a previously developed anti-IL6 antibody. Consistent with roles for IL6 in promoting tumor angiogenesis,we found that MEDI5117 inhibited the growth of endothelial cells,which can produce IL6 and support tumorigenesis. Notably,in tumor xenograft assays in mice,we documented the ability of MEDI5117 to enhance the antitumor activities of chemotherapy or gefitinib in combination treatment regimens. MEDI5117 also displayed robust activity on its own against trastuzumab-resistant HER2(+) tumor cells by targeting the CD44(+)CD24(-) cancer stem cell population. Collectively,our findings extend the evidence of important pleiotropic roles of IL6 in tumorigenesis and drug resistance,and offer a preclinical proof of concept for the use of IL6 antibodies in combination regimens to heighten therapeutic responses and overcome drug resistance.
View Publication
文献
Handel AE et al. (MAR 2016)
Human Molecular Genetics 25 5 989--1000
Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics
Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons,but little has been done to characterize these at cellular resolution. In particular,it is unclear to what extent in vitro two-dimensional,relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally,93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And,68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly,a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However,this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers,although effective,may not be able to disambiguate cortical layer identity in all cells.
View Publication