Miranda C et al. (OCT 2015)
Biotechnology Journal 10 10 1612--1624
Spatial and temporal control of cell aggregation efficiently directs human pluripotent stem cells towards neural commitment
3D suspension culture is generally considered a promising method to achieve efficient expansion and controlled differentiation of human pluripotent stem cells (hPSCs). In this work,we focused on developing an integrated culture platform for expansion and neural commitment of hPSCs into neural precursors using 3D suspension conditions and chemically-defined culture media. We evaluated different inoculation methodologies for hPSC expansion as 3D aggregates and characterized the resulting cultures in terms of aggregate size distribution. It was demonstrated that upon single-cell inoculation,after four days of culture,3D aggregates were composed of homogenous populations of hPSC and were characterized by an average diameter of 139 ± 26 μm,which was determined to be the optimal size to initiate neural commitment. Temporal analysis revealed that upon neural specification it is possible to maximize the percentage of neural precursor cells expressing the neural markers Sox1 and Pax6 after nine days of culture. These results highlight our ability to define a robust method for production of hPSC-derived neural precursors that minimizes processing steps and that constitutes a promising alternative to the traditional planar adherent culture system due to a high potential for scaling-up.
View Publication
文献
Tateno H et al. (MAY 2015)
Stem Cell Reports 4 5 811--820
Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin-toxin fusion protein
The application of stem-cell-based therapies in regenerative medicine is hindered by the tumorigenic potential of residual human pluripotent stem cells. Previously,we identified a human pluripotent stem-cell-specific lectin probe,called rBC2LCN,by comprehensive glycome analysis using high-density lectin microarrays. Here we developed a recombinant lectin-toxin fusion protein of rBC2LCN with a catalytic domain of Pseudomonas aeruginosa exotoxin A,termed rBC2LCN-PE23,which could be expressed as a soluble form from the cytoplasm of Escherichia coli and purified to homogeneity by one-step affinity chromatography. rBC2LCN-PE23 bound to human pluripotent stem cells,followed by its internalization,allowing intracellular delivery of a cargo of cytotoxic protein. The addition of rBC2LCN-PE23 to the culture medium was sufficient to completely eliminate human pluripotent stem cells. Thus,rBC2LCN-PE23 has the potential to contribute to the safety of stem-cell-based therapies.
View Publication
文献
Schwartz C et al. (JUN 2015)
Blood 125 25 3896--904
Eosinophil-specific deletion of IκBα in mice reveals a critical role of NF-κB-induced Bcl-xL for inhibition of apoptosis.
Eosinophils are associated with type 2 immune responses to allergens and helminths. They release various proinflammatory mediators and toxic proteins on activation and are therefore considered proinflammatory effector cells. Eosinophilia is promoted by the cytokines interleukin (IL)-3,IL-5,and granulocyte macrophage-colony-stimulating factor (GM-CSF) and can result from enhanced de novo production or reduced apoptosis. In this study,we show that only IL-5 induces differentiation of eosinophils from bone marrow precursors,whereas IL-5,GM-CSF,and to a lesser extent IL-3 promote survival of mature eosinophils. The receptors for these cytokines use the common β chain,which serves as the main signaling unit linked to signal transducer and activator of transcription 5,p38 mitogen-activated protein kinase,and nuclear factor (NF)-κB pathways. Inhibition of NF-κB induced apoptosis of in vitro cultured eosinophils. Selective deletion of IκBα in vivo resulted in enhanced expression of Bcl-xL and reduced apoptosis during helminth infection. Retroviral overexpression of Bcl-xL promoted survival,whereas pharmacologic inhibition of Bcl-xL in murine or human eosinophils induced rapid apoptosis. These results suggest that therapeutic strategies targeting Bcl-xL in eosinophils could improve health conditions in allergic inflammatory diseases.
View Publication
文献
Zhu H et al. (MAR 2015)
Stem Cells International 2015 621057
Development of a xeno-free substrate for human embryonic stem cell growth
Traditionally,human embryonic stem cells (hESCs) are cultured on inactivated live feeder cells. For clinical application using hESCs,there is a requirement to minimize the risk of contamination with animal components. Extracellular matrix (ECM) derived from feeder cells is the most natural way to provide xeno-free substrates for hESC growth. In this study,we optimized the step-by-step procedure for ECM processing to develop a xeno-free ECM that supports the growth of undifferentiated hESCs. In addition,this newly developed xeno-free substrate can be stored at 4°C and is ready to use upon request,which serves as an easier way to amplify hESCs for clinical applications.
View Publication
文献
Rouzbeh S et al. (AUG 2015)
Stem Cells 33 8 2431--2441
Molecular signature of erythroblast enucleation in human embryonic stem cells.
While enucleation is a critical step in the terminal differentiationbackslashnof human red blood cells,the molecular mechanisms underlying thisbackslashnunique process remain unclear. To investigate erythroblast enucleationbackslashnwe studied the erythroid differentiation of human embryonic stembackslashncells (hESCs),which provide a unique model for deeper understandingbackslashnof the development and differentiation of multiple cell types. Firstly,backslashnusing a two-step protocol,we demonstrated that terminal erythroidbackslashndifferentiation from hESCs is directly dependent on the age of thebackslashnembryoid bodies. Secondly,by choosing hESCs in two extreme conditionsbackslashnof erythroid culture,we obtained an original differentiation modelbackslashnwhich allows one to study the mechanisms underlying the enucleationbackslashnof erythroid cells by analyzing the gene and miRNA (miR) expressionbackslashnprofiles of cells from these two culture conditions. Thirdly,usingbackslashnan integrated analysis of mRNA and miR expression profiles,we identifiedbackslashn5 miRs potentially involved in erythroblast enucleation. Finally,backslashnby selective knockdown of these 5 miRs we found miR-30a to be a regulatorbackslashnof erythroblast enucleation in hESCs. This article is protected bybackslashncopyright. All rights reserved.
View Publication
文献
Tadeu AMB et al. (APR 2015)
PLoS ONE 10 4 e0122493
Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells
In recent years,several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here,we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore,we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly,these genes are also associated with skin disorders and ectodermal defects,providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.
View Publication
文献
Reeves SR et al. (JAN 2015)
Respiratory research 16 21
Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children.
BACKGROUND: Airway remodeling is a proposed mechanism that underlies the persistent loss of lung function associated with childhood asthma. Previous studies have demonstrated that human lung fibroblasts (HLFs) co-cultured with primary human bronchial epithelial cells (BECs) from asthmatic children exhibit greater expression of extracellular matrix (ECM) components compared to co-culture with BECs derived from healthy children. Myofibroblasts represent a population of differentiated fibroblasts that have greater synthetic activity. We hypothesized co-culture with asthmatic BECs would lead to greater fibroblast to myofibroblast transition (FMT) compared to co-culture with healthy BECs. METHODS: BECs were obtained from well-characterized asthmatic and healthy children and were proliferated and differentiated at an air-liquid interface (ALI). BEC-ALI cultures were co-cultured with HLFs for 96 hours. RT-PCR was performed in HLFs for alpha smooth muscle actin ($$-SMA) and flow cytometry was used to assay for $$-SMA antibody labeling of HLFs. RT-PCR was also preformed for the expression of tropomyosin-I as an additional marker of myofibroblast phenotype. In separate experiments,we investigated the role of TGF$$2 in BEC-HLF co-cultures using monoclonal antibody inhibition. RESULTS: Expression of $$-SMA by HLFs alone was greater than by HLFs co-cultured with healthy BECs,but not different than $$-SMA expression by HLFs co-cultured with asthmatic BECs. Flow cytometry also revealed significantly less $$-SMA expression by healthy co-co-cultures compared to asthmatic co-cultures or HLF alone. Monoclonal antibody inhibition of TGF$$2 led to similar expression of $$-SMA between healthy and asthmatic BEC-HLF co-cultures. Expression of topomyosin-I was also significantly increased in HLF co-cultured with asthmatic BECs compared to healthy BEC-HLF co-cultures or HLF cultured alone. CONCLUSION: These findings suggest dysregulation of FMT in HLF co-cultured with asthmatic as compared to healthy BECs. Our results suggest TGF$$2 may be involved in the differential regulation of FMT by asthmatic BECs. These findings further illustrate the importance of BEC-HLF cross-talk in asthmatic airway remodeling.
View Publication
文献
Akizu N et al. (MAY 2015)
Nature genetics 47 5 528--34
Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction.
Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability,with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia,coarsened facial features and intellectual disability,due to truncating mutations in the sorting nexin gene SNX14,encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate,a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma,accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.
View Publication
文献
Lin F et al. (AUG 2015)
Hepatology (Baltimore,Md.) 62 2 505--20
The camKK2/camKIV relay is an essential regulator of hepatic cancer.
UNLABELLED Hepatic cancer is one of the most lethal cancers worldwide. Here,we report that the expression of Ca(2+) /calmodulin-dependent protein kinase kinase 2 (CaMKK2) is significantly up-regulated in hepatocellular carcinoma (HCC) and negatively correlated with HCC patient survival. The CaMKK2 protein is highly expressed in all eight hepatic cancer cell lines evaluated and is markedly up-regulated relative to normal primary hepatocytes. Loss of CaMKK2 function is sufficient to inhibit liver cancer cell growth,and the growth defect resulting from loss of CaMKK2 can be rescued by ectopic expression of wild-type CaMKK2 but not by kinase-inactive mutants. Cellular ablation of CaMKK2 using RNA interference yields a gene signature that correlates with improvement in HCC patient survival,and ablation or pharmacological inhibition of CaMKK2 with STO-609 impairs tumorigenicity of liver cancer cells in vivo. Moreover,CaMKK2 expression is up-regulated in a time-dependent manner in a carcinogen-induced HCC mouse model,and STO-609 treatment regresses hepatic tumor burden in this model. Mechanistically,CaMKK2 signals through Ca(2+) /calmodulin-dependent protein kinase 4 (CaMKIV) to control liver cancer cell growth. Further analysis revealed that CaMKK2 serves as a scaffold to assemble CaMKIV with key components of the mammalian target of rapamycin/ribosomal protein S6 kinase,70 kDa,pathway and thereby stimulate protein synthesis through protein phosphorylation. CONCLUSION The CaMKK2/CaMKIV relay is an upstream regulator of the oncogenic mammalian target of rapamycin/ribosomal protein S6 kinase,70 kDa,pathway,and the importance of this CaMKK2/CaMKIV axis in HCC growth is confirmed by the potent growth inhibitory effects of genetically or pharmacologically decreasing CaMKK2 activity; collectively,these findings suggest that CaMKK2 and CaMKIV may represent potential targets for hepatic cancer.
View Publication
文献
Ye L et al. ( 2015)
1299 103--114
Fabrication of a myocardial patch with cells differentiated from human-induced pluripotent stem cells
The incidence of cardiovascular disease represents a significant and growing health-care challenge to the developed and developing world. The ability of native heart muscle to regenerate in response to myocardial infarct is minimal. Tissue engineering and regenerative medicine approaches represent one promising response to this difficulty. Here,we present methods for the construction of a cell-seeded cardiac patch with the potential to promote regenerative outcomes in heart muscle with damage secondary to myocardial infarct. This method leverages iPS cells and a fibrin-based scaffold to create a simple and commercially viable tissue-engineered cardiac patch. Human-induced pluripotent stem cells (hiPSCs) can,in principle,be differentiated into cells of any lineage. However,most of the protocols used to generate hiPSC-derived endothelial cells (ECs) and cardiomyocytes (CMs) are unsatisfactory because the yield and phenotypic stability of the hiPSC-ECs are low,and the hiPSC-CMs are often purified via selection for expression of a promoter-reporter construct. In this chapter,we describe an hiPSC-EC differentiation protocol that generates large numbers of stable ECs and an hiPSC-CM differentiation protocol that does not require genetic manipulation,single-cell selection,or sorting with fluorescent dyes or other reagents. We also provide a simple but effective method that can be used to combine hiPSC-ECs and hiPSC-CMs with hiPSC-derived smooth muscle cells to engineer a contracting patch of cardiac cells.
View Publication
文献
Floyd ZE et al. (APR 2015)
Cellular reprogramming 17 2 95--105
Prolonged proteasome inhibition cyclically upregulates Oct3/4 and Nanog gene expression, but reduces induced pluripotent stem cell colony formation.
There is ample evidence that the ubiquitin-proteasome system is an important regulator of transcription and its activity is necessary for maintaining pluripotency and promoting cellular reprogramming. Moreover,proteasome activity contributes to maintaining the open chromatin structure found in pluripotent stem cells,acting as a transcriptional inhibitor at specific gene loci generally associated with differentiation. The current study was designed to understand further the role of proteasome inhibition in reprogramming and its ability to modulate endogenous expression of pluripotency-related genes and induced pluripotent stem cells (iPSCs) colony formation. Herein,we demonstrate that acute combinatorial treatment with the proteasome inhibitors MG101 or MG132 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) increases gene expression of the pluripotency marker Oct3/4,and that MG101 alone is as effective as VPA in the induction of Oct3/4 mRNA expression in fibroblasts. Prolonged proteasome inhibition cyclically upregulates gene expression of Oct3/4 and Nanog,but reduces colony formation in the presence of the iPSC induction cocktail. In conclusion,our results demonstrate that the 26S proteasome is an essential modulator in the reprogramming process. Its inhibition enhances expression of pluripotency-related genes; however,efficient colony formation requires proteasome activity. Therefore,discovery of small molecules that increase proteasome activity might lead to more efficient cell reprogramming and generation of pluripotent cells.
View Publication
文献
Gallegos-Cá et al. (AUG 2015)
Stem cells and development 24 16 1901--1911
For diseases of the brain,the pig (Sus scrofa) is increasingly being used as a model organism that shares many anatomical and biological similarities with humans. We report that pig induced pluripotent stem cells (iPSC) can recapitulate events in early mammalian neural development. Pig iPSC line (POU5F1(high)/SSEA4(low)) had a higher potential to form neural rosettes (NR) containing neuroepithelial cells than either POU5F1(low)/SSEA4(low) or POU5F1(low)/SSEA4(high) lines. Thus,POU5F1 and SSEA4 pluripotency marker profiles in starting porcine iPSC populations can predict their propensity to form more robust NR populations in culture. The NR were isolated and expanded in vitro,retaining their NR morphology and neuroepithelial molecular properties. These cells expressed anterior central nervous system fate markers OTX2 and GBX2 through at least seven passages,and responded to retinoic acid,promoting a more posterior fate (HOXB4+,OTX2-,and GBX2-). These findings offer insight into pig iPSC development,which parallels the human iPSC in both anterior and posterior neural cell fates. These in vitro similarities in early neural differentiation processes support the use of pig iPSC and differentiated neural cells as a cell therapy in allogeneic porcine neural injury and degeneration models,providing relevant translational data for eventual human neural cell therapies.
View Publication