Liu Y et al. (APR 2014)
British journal of cancer 110 8 2063--2071
Lack of correlation of stem cell markers in breast cancer stem cells.
BACKGROUND Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers,identify the same population of cells,or equate to therapeutic response is controversial. METHODS We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo,comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin,docetaxol and radiotherapy. RESULTS CD24,CD44,ALDH and SOX2 expression,the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo,cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers,although ER-negative cells accumulate. CONCLUSIONS Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications,rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer.
View Publication
文献
Weng Z et al. (JUL 2014)
Stem cells and development 23 14 1704--1716
A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells.
Self-renewable human pluripotent stem cells (hPSCs) serve as a potential unlimited ex vivo source of human cardiomyocytes (CMs) for cell-based disease modeling and therapies. Although recent advances in directed differentiation protocols have enabled more efficient derivation of hPSC-derived CMs with an efficiency of ∼50%-80% CMs and a final yield of ∼1-20 CMs per starting undifferentiated hPSC,these protocols are often not readily transferrable across lines without first optimizing multiple parameters. Further,the resultant populations are undefined for chamber specificity or heterogeneous containing mixtures of atrial,ventricular (V),and pacemaker derivatives. Here we report a highly cost-effective and reproducibly efficient system for deriving hPSC-ventricular cardiomyocytes (VCMs) from all five human embryonic stem cell (HES2,H7,and H9) and human induced PSC (hiPSC) (reprogrammed from human adult peripheral blood CD34(+) cells using nonintegrating episomal vectors) lines tested. Cardiogenic embryoid bodies could be formed by the sequential addition of BMP4,Rho kinase inhibitor,activin-A,and IWR-1. Spontaneously contracting clusters appeared as early as day 8. At day 16,up to 95% of cells were cTnT(+). Of which,93%,94%,100%,92%,and 92% of cardiac derivatives from HES2,H7,H9,and two iPSC lines,respectively,were VCMs as gauged by signature ventricular action potential and ionic currents (INa(+)/ICa,L(+)/IKr(+)/IKATP(+)); Ca(2+) transients showed positive chronotropic responses to $\$-adrenergic stimulation. Our simple,cost-effective protocol required the least amounts of reagents and time compared with others. While the purity and percentage of PSC-VCMs were comparable to a recently published protocol,the present yield and efficiency with a final output of up to 70 hPSC-VCMs per hPSC was up to 5-fold higher and without the need of performing line-specific optimization. These differences were discussed. The results may lead to mass production of hPSC-VCMs in bioreactors.
View Publication
文献
Lippmann ES et al. (FEB 2014)
Scientific reports 4 February 2014 4160
A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources.
Blood-brain barrier (BBB) models are often used to investigate BBB function and screen brain-penetrating therapeutics,but it has been difficult to construct a human model that possesses an optimal BBB phenotype and is readily scalable. To address this challenge,we developed a human in vitro BBB model comprising brain microvascular endothelial cells (BMECs),pericytes,astrocytes and neurons derived from renewable cell sources. First,retinoic acid (RA) was used to substantially enhance BBB phenotypes in human pluripotent stem cell (hPSC)-derived BMECs,particularly through adherens junction,tight junction,and multidrug resistance protein regulation. RA-treated hPSC-derived BMECs were subsequently co-cultured with primary human brain pericytes and human astrocytes and neurons derived from human neural progenitor cells (NPCs) to yield a fully human BBB model that possessed significant tightness as measured by transendothelial electrical resistance (˜5,000 $\$(2)). Overall,this scalable human BBB model may enable a wide range of neuroscience studies.
View Publication
文献
Yang L et al. ( 2014)
1114 245--267
CRISPR-cas-mediated targeted genome editing in human cells
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems have evolved as an adaptive surveillance and defense mechanism in bacteria and archaea that uses short RNAs to direct degradation of foreign genetic elements. Here,we present our protocol for utilizing the S. pyogenes type II bacterial CRISPR system to achieve sequence-specific genome alterations in human cells. In principle,any genomic sequence of the form N(19)NGG can be targeted with the generation of custom guide RNA (gRNA) which functions to direct the Cas9 protein to genomic targets and induce DNA cleavage. Here,we describe our methods for designing and generating gRNA expression constructs either singly or in a multiplexed manner,as well as optimized protocols for the delivery of Cas9-gRNA components into human cells. Genomic alterations at the target site are then introduced either through nonhomologous end joining (NHEJ) or through homologous recombination (HR) in the presence of an appropriate donor sequence. This RNA-guided editing tool offers greater ease of customization and synthesis in comparison to existing sequence-specific endonucleases and promises to become a highly versatile and multiplexable human genome engineering platform.
View Publication
文献
Bartel MA and Schaffer DV ( 2014)
1114 169--179
Enhanced gene targeting of adult and pluripotent stem cells using evolved adeno-Associated virus
Efficient approaches for the precise genetic engineering of stem cells can enhance both basic and applied stem cell research. Adeno-associated virus (AAV) vectors have demonstrated high-efficiency gene delivery and gene targeting to numerous cell types,and AAV vectors developed specifically for gene delivery to stem cells have further increased gene targeting frequency compared to plasmid construct techniques. This chapter details the production and purification techniques necessary to generate adeno-associated viral vectors for use in high-efficiency gene targeting of adult or pluripotent stem cell applications. Culture conditions used to achieve high gene targeting frequencies in rat neural stem cells and human pluripotent stem cells are also described.
View Publication
文献
Londoñ et al. (APR 2014)
Molecular cancer therapeutics 13 4 800--811
Effect of niclosamide on basal-like breast cancers.
Basal-like breast cancers (BLBC) are poorly differentiated and display aggressive clinical behavior. These tumors become resistant to cytotoxic agents,and tumor relapse has been attributed to the presence of cancer stem cells (CSC). One of the pathways involved in CSC regulation is the Wnt/$$-catenin signaling pathway. LRP6,a Wnt ligand receptor,is one of the critical elements of this pathway and could potentially be an excellent therapeutic target. Niclosamide has been shown to inhibit the Wnt/$$-catenin signaling pathway by causing degradation of LRP6. TRA-8,a monoclonal antibody specific to TRAIL death receptor 5,is cytotoxic to BLBC cell lines and their CSC-enriched populations. The goal of this study was to examine whether niclosamide is cytotoxic to BLBCs,specifically the CSC population,and if in combination with TRA-8 could produce increased cytotoxicity. Aldehyde dehydrogenase (ALDH) is a known marker of CSCs. By testing BLBC cells for ALDH expression by flow cytometry,we were able to isolate a nonadherent population of cells that have high ALDH expression. Niclosamide showed cytotoxicity against these nonadherent ALDH-expressing cells in addition to adherent cells from four BLBC cell lines: 2LMP,SUM159,HCC1187,and HCC1143. Niclosamide treatment produced reduced levels of LRP6 and $$-catenin,which is a downstream Wnt/$$-catenin signaling protein. The combination of TRA-8 and niclosamide produced additive cytotoxicity and a reduction in Wnt/$$-catenin activity. Niclosamide in combination with TRA-8 suppressed growth of 2LMP orthotopic tumor xenografts. These results suggest that niclosamide or congeners of this agent may be useful for the treatment of BLBC.
View Publication
文献
Yang W-T and Zheng P-S (FEB 2014)
PloS one 9 2 e88827
Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.
OBJECTIVE The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However,the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ) in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR,immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR). Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (Ptextless0.005). KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (Ptextless0.01) and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486,P = 0.003). Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza),the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased,the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.
View Publication
文献
Richter A et al. (MAR 2014)
Stem Cells 32 3 636--648
BMP4 promotes EMT and mesodermal commitment in human embryonic stem cells via SLUG and MSX2
Bone morphogenetic proteins (BMPs) initiate differentiation in human embryonic stem cells (hESCs) but the exact mechanisms have not been fully elucidated. We demonstrate here that SLUG and MSX2,transcription factors involved in epithelial-mesenchymal transitions,essential features of gastrulation in development and tumor progression,are important mediators of BMP4-induced differentiation in hESCs. Phosphorylated Smad1/5/8 colocalized with the SLUG protein at the edges of hESC colonies where differentiation takes place. The upregulation of the BMP target SLUG was direct as shown by the binding of phosphorylated Smad1/5/8 to its promoter,which interrupted the formation of adhesion proteins,resulting in migration. Knockdown of SLUG by short hairpin RNA blocked these changes,confirming an important role for SLUG in BMP-mediated mesodermal differentiation. Furthermore,BMP4-induced MSX2 expression leads to mesoderm formation and then preferential differentiation toward the cardiovascular lineage.
View Publication
文献
Garcí et al. ( 2014)
Journal of General Virology 95 PART 5 1033--42
Characterization of an enhanced antigenic change in the pandemic 2009 H1N1 influenza virus haemagglutinin
Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However,one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al.,Proc Natl Acad Sci USA,104,6283-6288,2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs,which contained instead nearby single amino acid changes in the HA head. Thus,either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover,this site is relevant for the human antibody response,as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.
文献
Cosgrove BD et al. (MAR 2014)
Nature medicine 20 3 255--64
Rejuvenation of the muscle stem cell population restores strength to injured aged muscles.
The elderly often suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging owing in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of MuSCs from aged mice are intrinsically defective relative to MuSCs from young mice,with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation. This deficiency is correlated with a higher incidence of cells that express senescence markers and is due to elevated activity of the p38α and p38β mitogen-activated kinase pathway. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast,subjecting the MuSC population from aged mice to transient inhibition of p38α and p38β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional MuSC population from aged mice,rejuvenating its potential for regeneration and serial transplantation as well as strengthening of damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy for the elderly.
View Publication
文献
Kim JJ et al. (JUN 2014)
Stem Cells 32 6 1468--1479
Discovery of consensus gene signature and intermodular connectivity defining self-renewal of human embryonic stem cells
Molecular markers defining self-renewing pluripotent embryonic stem cells (ESCs) have been identified by relative comparisons between undifferentiated and differentiated cells. Most of analysis has been done under a specific differentiation condition that may present significantly different molecular changes over others. Therefore,it is currently unclear if there are true consensus markers defining undifferentiated hESCs. To identify a set of key genes consistently altered during differentiation of hESCs regardless of differentiation conditions we have performed microarray analysis on undifferentiated hESCs (H1 and H9) and differentiated EB's and validated our results using publicly available expression array data sets. We constructed consensus modules by Weighted Gene Correlation Analysis (WGCNA) and discovered novel markers that are consistently present in undifferentiated hESCs under various differentiation conditions. We have validated top markers (downregulated: LCK,KLKB1 and SLC7A3; upregulated: RhoJ,Zeb2 and Adam12) upon differentiation. Functional validation analysis of LCK in self-renewal of hESCs by using LCK inhibitor or gene silencing with siLCK resulted in a loss of undifferentiation characteristics- morphological change,reduced alkaline phosphatase activity and pluripotency gene expression,demonstrating a potential functional role of LCK in self-renewal of hESCs. We have designated hESC markers to interactive networks in the genome,identifying possible interacting partners and showing how new markers relate to each other. Furthermore,comparison of these data sets with available datasets from iPSCs revealed that the level of these newly identified markers were correlated to the establishment of iPSCs,which may imply a potential role of these markers in gaining of cellular potency. Stem Cells 2014.
View Publication
文献
Chronopoulou E et al. ( 2014)
1131 47--70
Hybridoma technology for the generation of rodent mAbs via classical fusion
Monoclonal antibodies (mAbs) have proven to be instrumental in the advancement of research,diagnostic,industrial vaccine,and therapeutic applications. The use of mAbs in laboratory protocols has been growing in an exponential fashion for the last four decades. Described herein are methods for the development of highly specific mAbs through traditional hybridoma fusion. For ultimate success,a series of simultaneously initiated protocols are to be undertaken with careful attention to cell health of both the myeloma fusion partner and immune splenocytes. Coordination and attention to detail will enable a researcher with basic tissue culture skills to generate mAbs from immunized rodents to a variety of antigens (including proteins,carbohydrates,DNA,and haptens) (see Note 1). Furthermore,in vivo and in vitro methods used for antigen sensitization of splenocytes prior to somatic fusion are described herein.
View Publication