Kouroupis D et al. (SEP 2016)
Stem cell research 17 2 448--457
Generation of stem cell-based bioartificial anterior cruciate ligament (ACL) grafts for effective ACL rupture repair.
In the present study,we combined stem cell technology with a non-absorbable biomaterial for the reconstruction of the ruptured ACL. Towards this purpose,multipotential stromal cells derived either from subcutaneous human adipose tissue (hAT-MSCs) or from induced pluripotent stem cells (iPSCs) generated from human foreskin fibroblasts (hiPSC-MSCs) were cultured on the biomaterial for 21days in vitro to generate a 3D bioartifical ACL graft. Stem cell differentiation towards bone and ligament at the ends and central part of the biomaterial was selectively induced using either BMP-2/FGF-2 or TGF-β/FGF-2 combinations,respectively. The bioartificial ACL graft was subsequently implanted in a swine ACL rupture model in place of the surgically removed normal ACL. Four months post-implantation,the tissue engineered ACL graft generated an ACL-like tissue exhibiting morphological and biochemical characteristics resembling those of normal ACL.
View Publication
Chen W et al. (JUN 2014)
Scientific reports 4 5404
Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique.
Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However,such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs),which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods,we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene,which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.
View Publication
Zhong X et al. (JUN 2014)
Nature communications 5 May 4047
Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs.
Many forms of blindness result from the dysfunction or loss of retinal photoreceptors. Induced pluripotent stem cells (iPSCs) hold great potential for the modelling of these diseases or as potential therapeutic agents. However,to fulfill this promise,a remaining challenge is to induce human iPSC to recreate in vitro key structural and functional features of the native retina,in particular the presence of photoreceptors with outer-segment discs and light sensitivity. Here we report that hiPSC can,in a highly autonomous manner,recapitulate spatiotemporally each of the main steps of retinal development observed in vivo and form three-dimensional retinal cups that contain all major retinal cell types arranged in their proper layers. Moreover,the photoreceptors in our hiPSC-derived retinal tissue achieve advanced maturation,showing the beginning of outer-segment disc formation and photosensitivity. This success brings us one step closer to the anticipated use of hiPSC for disease modelling and open possibilities for future therapies.
View Publication
Finkbeiner SR et al. (NOV 2015)
Biology open 4 11 bio.013235--
Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.
Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving,such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes,new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs),called human intestinal organoids (HIOs),have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However,given that HIOs are small three-dimensional structures grown in vitro,methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds,and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro,the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast,HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine,which need to be explored further to develop them into fully functional tissue.
View Publication
Wei Y et al. (MAR 2017)
Placenta 51 28--37
Generation of trophoblast-like cells from the amnion in vitro: A novel cellular model for trophoblast development.
Despite the high incidence of trophoblast-related diseases,the molecular mechanism of inadequate early trophoblast development is still unclear due to the lack of an appropriate cellular model in vitro. In the present study,we reprogrammed the amniotic cells to be induced pluripotent stem cells (iPSCs) via a non-virus and non-integrated method and subsequently differentiated them into trophoblast-like cells by a modified BMP4 strategy in E6 medium. Compared with the previously studied trophoblast-like cells from ESCs,the iPSCs derived trophoblast-like cells behave similarly in terms of gene expression profiles and biofunctions. Also we confirmed the differentiating tendency from iPSCs to be syncytiotrophoblasts-like cells might be caused by inappropriate differentiating oxygen condition. Additionally,we preliminarily indicated in vitro artificial" differentiation of iPSCs also undergoing a possible trophoblastic stem cell stage as witnessed in vivo. In conclusion we provided an in vitro cellular model to study early trophoblast development for specific individual by using the feasible amnion.
View Publication
Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells.
Human endothelial cells (ECs) and pericytes are of great interest for research on vascular development and disease,as well as for future therapy. This protocol describes the efficient generation of ECs and pericytes from human pluripotent stem cells (hPSCs) under defined conditions. Essential steps for hPSC culture,differentiation,isolation and functional characterization of ECs and pericytes are described. Substantial numbers of both cell types can be derived in only 2-3 weeks: this involves differentiation (10 d),isolation (1 d) and 4 or 10 d of expansion of ECs and pericytes,respectively. We also describe two assays for functional evaluation of hPSC-derived ECs: (i) primary vascular plexus formation upon coculture with hPSC-derived pericytes and (ii) incorporation in the vasculature of zebrafish xenografts in vivo. These assays can be used to test the quality and drug sensitivity of hPSC-derived ECs and model vascular diseases with patient-derived hPSCs.
View Publication
Cao N et al. ( 2015)
1212 113--125
Generation, expansion, and differentiation of cardiovascular progenitor cells from human pluripotent stem cells.
Cardiovascular progenitor cells (CVPCs) derived from human embryonic stem cells and human induced pluripotent stem cells represent an invaluable potential source for the study of early embryonic cardiovascular development and stem cell-based therapies for congenital and acquired heart diseases. To fully realize their values,it is essential to establish an efficient and stable differentiation system for the induction of these pluripotent stem cells (PSCs) into the CVPCs and robustly expand them in culture,and then further differentiate these CVPCs into multiple cardiovascular cell types. Here we describe the protocols for efficient derivation,expansion,and differentiation of CVPCs from hPSCs in a chemically defined medium under feeder- and serum-free culture conditions.
View Publication
Brafman DA ( 2015)
Methods in molecular biology (Clifton,N.J.) 1212 87--102
Generation, Expansion, and Differentiation of Human Pluripotent Stem Cell (hPSC) Derived Neural Progenitor Cells (NPCs).
Human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs),a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS),could provide an unlimited source of cells for neural-related cell-based therapies and disease modeling. However,the use of NPCs for the study and treatment of a variety of debilitating neurological diseases requires the development of scalable and reproducible protocols for their generation,expansion,characterization,and neuronal differentiation. Here,we describe a serum-free method for the stepwise generation of NPCs from hPSCs through the sequential formation of embryoid bodies (EBs) and neuro-epithelial-like rosettes. NPCs isolated from neural rosette cultures can be homogenously expanded while maintaining high expression of pan-neural markers such as SOX1,SOX2,and Nestin. Finally,this protocol allows for the robust differentiation of NPCs into microtubule-associated protein 2 (MAP2) and β-Tubulin-III (β3T) positive neurons.
View Publication
Praetor A et al. (FEB 2009)
Blood 113 9 1919--28
Genetic deletion of JAM-C reveals a role in myeloid progenitor generation.
Hematopoietic stem cells (HSCs) have the capacity to self-renew and continuously differentiate into all blood cell lineages throughout life. At each branching point during differentiation,interactions with the environment are key in the generation of daughter cells with distinct fates. Here,we examined the role of the cell adhesion molecule JAM-C,a protein known to mediate cellular polarity during spermatogenesis,in hematopoiesis. We show that murine JAM-C is highly expressed on HSCs in the bone marrow (BM). Expression correlates with self-renewal,the highest being on long-term repopulating HSCs,and decreases with differentiation,which is maintained longest among myeloid committed progenitors. Inclusion of JAM-C as a sole marker on lineage-negative BM cells yields HSC enrichments and long-term multilineage reconstitution when transferred to lethally irradiated mice. Analysis of Jam-C-deficient mice showed that two-thirds die within 48 hours after birth. In the surviving animals,loss of Jam-C leads to an increase in myeloid progenitors and granulocytes in the BM. Stem cells and myeloid cells from fetal liver are normal in number and homing to the BM. These results provide evidence that JAM-C defines HSCs in the BM and that JAM-C plays a role in controlling myeloid progenitor generation in the BM.
View Publication
Iovino S et al. (DEC 2014)
Diabetes 63 12 4130--4142
Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells
Insulin resistance is central to diabetes and metabolic syndrome. To define the consequences of genetic insulin resistance distinct from those secondary to cellular differentiation or in vivo regulation,we generated induced pluripotent stem cells (iPSCs) from individuals with insulin receptor mutations and age-appropriate control subjects and studied insulin signaling and gene expression compared with the fibroblasts from which they were derived. iPSCs from patients with genetic insulin resistance exhibited altered insulin signaling,paralleling that seen in the original fibroblasts. Insulin-stimulated expression of immediate early genes and proliferation were also potently reduced in insulin resistant iPSCs. Global gene expression analysis revealed marked differences in both insulin-resistant iPSCs and corresponding fibroblasts compared with control iPSCs and fibroblasts. Patterns of gene expression in patients with genetic insulin resistance were particularly distinct in the two cell types,indicating dependence on not only receptor activity but also the cellular context of the mutant insulin receptor. Thus,iPSCs provide a novel approach to define effects of genetically determined insulin resistance. This study demonstrates that effects of insulin resistance on gene expression are modified by cellular context and differentiation state. Moreover,altered insulin receptor signaling and insulin resistance can modify proliferation and function of pluripotent stem cell populations.
View Publication