Song B et al. (MAY 2015)
Stem cells and development 24 9 1053--1065
Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.
The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs),subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB),and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However,the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study,we used the latest gene-editing tool,clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9),to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then,we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation,gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly,the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system,and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.
View Publication
Kim H-R et al. ( 2016)
Cell & bioscience 6 1 50
Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway.
BACKGROUND Aside from its importance in reproduction,estrogen (E2) is known to regulate the proliferation and differentiation of hematopoietic stem cells in rodents. However,the regulatory role of E2 in human hematopoietic system has not been investigated. The purpose of this study is to investigate the effect of E2 on hematopoietic differentiation using human pluripotent stem cells (hPSCs). RESULTS E2 improved hematopoietic differentiation of hPSCs via estrogen receptor alpha (ER-$$)-dependent pathway. During hematopoietic differentiation of hPSCs,ER-$$ is persistently maintained and hematopoietic phenotypes (CD34 and CD45) were exclusively detected in ER-$$ positive cells. Interestingly,continuous E2 signaling is required to promote hematopoietic output from hPSCs. Supplementation of E2 or an ER-$$ selective agonist significantly increased the number of hemangioblasts and hematopoietic progenitors,and subsequent erythropoiesis,whereas ER-$$ selective agonist did not. Furthermore,ICI 182,780 (ER antagonist) completely abrogated the E2-induced hematopoietic augmentation. Not only from hPSCs but also from human umbilical cord bloods,does E2 signaling potentiate hematopoietic development,suggesting universal function of E2 on hematopoiesis. CONCLUSIONS Our study identifies E2 as positive regulator of human hematopoiesis and suggests that endocrine factors such as E2 influence the behavior of hematopoietic stem cells in various physiological conditions.
View Publication
Lam AT-L et al. (AUG 2015)
BioResearch open access 4 1 242--257
Improved Human Pluripotent Stem Cell Attachment and Spreading on Xeno-Free Laminin-521-Coated Microcarriers Results in Efficient Growth in Agitated Cultures.
Human pluripotent stem cells (hPSC) are self-renewing cells having the potential of differentiation into the three lineages of somatic cells and thus can be medically used in diverse cellular therapies. One of the requirements for achieving these clinical applications is development of completely defined xeno-free systems for large-scale cell expansion and differentiation. Previously,we demonstrated that microcarriers (MCs) coated with mouse laminin-111 (LN111) and positively charged poly-l-lysine (PLL) critically enable the formation and evolution of cells/MC aggregates with high cell yields obtained under agitated conditions. In this article,we further improved the MC system into a defined xeno-free MC one in which the MCs are coated with recombinant human laminin-521 (LN521) alone without additional positive charge. The high binding affinity of the LN521 to cell integrins enables efficient initial HES-3 cell attachment (87%) and spreading (85%),which leads to generation of cells/MC aggregates (400 $\$ in size) and high cell yields (2.4-3.5×10(6) cells/mL) within 7 days in agitated plate and scalable spinner cultures. The universality of the system was demonstrated by propagation of an induced pluripotent cells line in this defined MC system. Long-term pluripotent (textgreater90% expression Tra-1-60) cell expansion and maintenance of normal karyotype was demonstrated after 10 cell passages. Moreover,tri-lineage differentiation as well as directed differentiation into cardiomyocytes was achieved. The new LN521-based MC system offers a defined,xeno-free,GMP-compatible,and scalable bioprocessing platform for the production of hPSC with the quantity and quality compliant for clinical applications. Use of LN521 on MCs enabled a 34% savings in matrix and media costs over monolayer cultures to produce 10(8) cells.
View Publication
Clarke DM et al. (JAN 2009)
Cytotherapy 11 4 472--9
Improved post-thaw recovery of peripheral blood stem/progenitor cells using a novel intracellular-like cryopreservation solution.
BACKGROUND AIMS Peripheral blood stem cells (PBSC) have become the preferred stem cell source for autologous hematopoietic transplantation. A critical aspect of this treatment modality is cryopreservation of the stem cell products,which permits temporal separation of the PBSC mobilization/collection phase from the subsequent high-dose therapy. While controlled rate-freezing and liquid nitrogen storage have become 'routine' practice in many cell-processing facilities,there is clearly room for improvement as current cryopreservation media formulations still result in significant loss and damage to the stem/progenitor cell populations essential for engraftment,and can also expose the patients to relatively undefined serum components and larger volumes of dimethylsulfoxide (DMSO) that can contribute to the morbidity and mortality of the transplant therapy. METHODS This study compared cryopreservation of PBSC in a novel intracellular-like,fully defined,serum- and protein-free preservation solution,CryoStor (BioLife Solutions Inc.),with a standard formulation used by the Fred Hutchinson Cancer Research Center (FHCRC). Briefly,human PBSC apheresis specimens were collected and 5 x 10(7) cells/1 mL sample vial were prepared for cryopreservation in the following solutions: (a) FHCRC standard,Normosol-R,5% human serum albumin (HAS) and 10% DMSO; and (b) CryoStor CS10 (final diluted concentration of 5% DMSO). A standard controlled-rate freezing program was employed,and frozen vials were stored in the vapor phase of a liquid nitrogen freezer for a minimum of 1 week. Vials were then thawed and evaluated for total nucleated cell count (TNC),viability,CD34 and granulocytes by flow cytometry,along with colony-forming activity in methylcellulose. RESULTS The PBSC samples frozen in CryoStor CS10 yielded significantly improved post-thaw recoveries for total viable CD34(+),colony-forming units (CFU) and granulocytes. Specifically,relative to the FHCRC standard formulation,cryopreservation with CS10 resulted in an average 1.8-fold increased recovery of viable CD34(+) cells (P=0.005),a 1.5-fold increase in CFU-granulocyte-macrophage (GM) numbers (P=0.030) and a 2.3-fold increase in granulocyte recovery (P=0.045). CONCLUSIONS This study indicates that use of CryoStor for cryopreservation can yield significantly improved recovery and in vitro functionality of stem/progenitor cells in PBSC products. In addition,it is important to note that these improved recoveries were obtained while not introducing any extra serum or serum-derived proteins,and reducing the final concentration/volume of DMSO by half. Further in vitro and in vivo studies are clearly necessary; however,these findings imply use of CryoStor for cryopreservation could result in improved engraftment for those patients with a lower content of CD34(+) cells in their PBSC collections,along with reducing the requirement for additional apheresis collections and decreasing the risk of adverse infusion reactions associated with higher exposure to DMSO.
View Publication
Christ O et al. (SEP 2007)
Haematologica 92 9 1165--72
Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity.
BACKGROUND AND OBJECTIVES: Primitive human hematopoietic cells contain higher levels of aldehyde dehydrogenase (ALDH) activity than their terminally differentiating progeny but the particular stages when ALDH levels change have not been well defined. The objective of this study was to compare ALDH levels among the earliest stages of hematopoietic cell differentiation and to determine whether these could be exploited to obtain improved purity of human cord blood cells with long-term lympho-myeloid repopulating activity in vivo. DESIGN AND METHODS: ALDEFLUOR-stained human cord blood cells displaying different levels of ALDH activity were first analyzed for co-expression of various surface markers. Subsets of these cells were then isolated by multi-parameter flow cytometry and assessed for short-and long-term repopulating activity in sublethally irradiated immunodeficient mice. RESULTS: Most short-term myeloid repopulating cells (STRC-M) and all long-term lympho-myeloid repopulating cells (LTRC-ML) stained selectively as ALDH+. Limiting dilution analysis of the frequencies of both STRC-M and LTRC-ML showed that they were similarly and most highly enriched in the 10% top ALDH+ cells. Removal of cells expressing CD2,CD3,CD7,CD14,CD16,CD24,CD36,CD38,CD56,CD66b,or glycophorin A from the ALDH+ low-density fraction of human cord blood cells with low light side-scattering properties yielded a population containing LTRC-ML at a frequency of 1/360. INTERPRETATION AND CONCLUSION: Elevated ALDH activity is a broadly inclusive property of primitive human cord blood cells that,in combination with other markers,allows easy isolation of the stem cell fraction at unprecedented purities.
View Publication
Luo C et al. (APR 2016)
ACS Applied Materials and Interfaces 8 13 8367--8375
Improving the Gene Transfection in Human Embryonic Stem Cells: Balancing with Cytotoxicity and Pluripotent Maintenance
Manipulation of genes in human embryonic stem cells (hESCs) is imperative for their highly potential applications; however,the transduction efficiency remains very low. Although existing evidence revealed the type,size,and zeta potential of vector affect gene transfection efficiency in cells,the systematic study in hESCs is scarce. In this study,using poly(amidoamine) (PAMAM) dendrimers ended with amine,hydroxyl,or carboxyl as model,we tested the influences of size and surface group as well as cytotoxicity and endocytosis on hESC gene transfection. We found that in culture medium of mTeSR the particle sizes of G5,G7,G4.5COOH,and G5OH were around 5 nm and G1 had a smaller size of 3.14 nm. G5 and G7 had a slight and significant positive zeta potential,respectively,whereas G1 was slightly negative,and G4.5COOH and G5OH were significantly negative. We demonstrated that only amine-terminated dendrimers accomplished gene transfection in hESCs,which is greater than that from Lipofectamine 2000 transfection. Ten micromolar G5 had the greatest efficiency and was better than 1000 μM G1. Only a low concentration (0.5 and 1 μM) of G7 realized gene delivery. Amine-ended dendrimers,especially with higher generations,were detrimental to the growth and pluripotent maintenance of hESCs. In contrast,similarly sized hydroxyl- and carboxyl-terminated dendrimers exerted much lower cytotoxicity,in which carboxyl-terminated dendrimer maintained pluripotency of hESCs. We also confirmed the endocytosis into and significant exocytosis from hESCs using FITC-labeled G5 dendrimer. These results suggested that careful considerations of size,concentration,and zeta potential,particularly the identity and position of groups,as well as minimized exocytosis in the design of a vector for hESC gene delivery are necessary,which helps to better design an effective vector in hESC gene transduction.
View Publication
Cai J et al. (JUL 2004)
Experimental hematology 32 7 585--98
In search of stemness"."
Stem cells have been identified and characterized in a variety of tissues. In this review we examine possible shared properties of stem cells. We suggest that irrespective of their lineal origin,stem cells have to respond in similar ways to regulate self-renewal and differentiation and it is likely that cell-cycle control,asymmetry/differentiation controls,cellular protective and DNA repair mechanisms,and associated apoptosis/senescence signaling pathways all might be expected to be more highly regulated in stem cells,likely by similar mechanisms. We review the literature to suggest a set of candidate stemness genes that may serve as universal stem cell markers. While we predict many similarities,we also predict that differences will exist between stem cell populations and that when transdifferentiation is considered genes expected to be both similar and different need to be examined.
View Publication
Sebastiano V et al. (NOV 2011)
Stem Cells 29 11 1717--1726
In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases.
The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected,patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression,avoiding the risk of insertional mutagenesis by therapeutic vectors,and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However,gene targeting in human pluripotent cells has remained challenging and inefficient. Recently,engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs,raising the prospect of using this technology to correct disease causing mutations. Here,we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions,we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient,transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications.
View Publication
Yea C-H et al. (JAN 2016)
Biomaterials 75 250--259
In situ label-free quantification of human pluripotent stem cells with electrochemical potential
Conventional methods for quantification of undifferentiated pluripotent stem cells such as fluorescence-activated cell sorting and real-time PCR analysis have technical limitations in terms of their sensitivity and recyclability. Herein,we designed a real-time in situ label-free monitoring system on the basis of a specific electrochemical signature of human pluripotent stem cells in vitro. The intensity of the signal of hPSCs highly corresponded to the cell number and remained consistent in a mixed population with differentiated cells. The electrical charge used for monitoring did not markedly affect the proliferation rate or molecular characteristics of differentiated human aortic smooth muscle cells. After YM155 treatment to ablate undifferentiated hPSCs,their specific signal was significantly reduced. This suggests that detection of the specific electrochemical signature of hPSCs would be a valid approach to monitor potential contamination of undifferentiated hPSCs,which can assess the risk of teratoma formation efficiently and economically.
View Publication
Vanneaux V et al. (JAN 2010)
Cell transplantation 19 9 1143--55
In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application?
Umbilical cord blood (CB) represents a main source of circulating endothelial progenitor cells (cEPCs). In view of their clinical use,in either the autologous or allogeneic setting,cEPCs should likely be expanded from CB kept frozen in CB banks. In this study,we compared the expansion,functional features,senescence pattern over culture,and in vivo angiogenic potential of cEPCs isolated from fresh or cryopreserved CB (cryoCB). cEPCs could be isolated in only 59% of cryoCB compared to 94% for fresh CB,while CB units were matched in terms of initial volume,nucleated and CD34(+) cell number. Moreover,the number of endothelial colony-forming cells was significantly decreased when using cryoCB. Once cEPCs culture was established,the proliferation,migration,tube formation,and acetylated-LDL uptake potentials were similar in both groups. In addition,cEPCs derived from cryoCB displayed the same senescence status and telomeres length as that of cEPCs derived from fresh CB. Karyotypic aberrations were found in cells obtained from both fresh and cryoCB. In vivo,in a hind limb ischemia murine model,cEPCs from fresh and cryoCB were equally efficient to induce neovascularization. Thus,cEPCs isolated from cryoCB exhibited similar properties to those of fresh CB in vitro and in vivo. However,the low frequency of cEPCs colony formation after cryopreservation shed light on the need for specific freezing conditions adapted to cEPCs in view of their future clinical use.
View Publication
Wilson K et al. (MAY 2008)
Journal of visualized experiments : JoVE 14 1--3
In vitro and in vivo bioluminescence reporter gene imaging of human embryonic stem cells.
The discovery of human embryonic stem cells (hESCs) has dramatically increased the tools available to medical scientists interested in regenerative medicine. However,direct injection of hESCs,and cells differentiated from hESCs,into living organisms has thus far been hampered by significant cell death,teratoma formation,and host immune rejection. Understanding the in vivo hESC behavior after transplantation requires novel imaging techniques to longitudinally monitor hESC localization,proliferation,and viability. Molecular imaging has given investigators a high-throughput,inexpensive,and sensitive means for tracking in vivo cell proliferation over days,weeks,and even months. This advancement has significantly increased the understanding of the spatio-temporal kinetics of hESC engraftment,proliferation,and teratoma-formation in living subjects. A major advance in molecular imaging has been the extension of noninvasive reporter gene assays from molecular and cellular biology into in vivo multi-modality imaging platforms. These reporter genes,under control of engineered promoters and enhancers that take advantage of the host cell s transcriptional machinery,are introduced into cells using a variety of vector and non-vector methods. Once in the cell,reporter genes can be transcribed either constitutively or only under specific biological or cellular conditions,depending on the type of promoter used. Transcription and translation of reporter genes into bioactive proteins is then detected with sensitive,noninvasive instrumentation (e.g.,CCD cameras) using signal-generating probes such as D-luciferin. To avoid the need for excitatory light to track stem cells in vivo as is required for fluorescence imaging,bioluminescence reporter gene imaging systems require only an exogenously administered probe to induce light emission. Firefly luciferase,derived from the firefly Photinus pyralis,encodes an enzyme that catalyzes D-luciferin to the optically active metabolite,oxyluciferin. Optical activity can then be monitored with an external CCD camera. Stably transduced cells that carry the reporter construct within their chromosomal DNA will pass the reporter construct DNA to daughter cells,allowing for longitudinal monitoring of hESC survival and proliferation in vivo. Furthermore,because expression of the reporter gene product is required for signal generation,only viable parent and daughter cells will create bioluminescence signal; apoptotic or dead cells will not. In this video,the specific materials and methods needed for tracking stem cell proliferation and teratoma formation with bioluminescence imaging will be described.
View Publication