Richie Ehrlich LI et al. (MAR 2011)
Blood 117 9 2618--24
In vitro assays misrepresent in vivo lineage potentials of murine lymphoid progenitors.
The identity of T-cell progenitors that seed the thymus has remained controversial,largely because many studies differ over whether these progenitors retain myeloid potential. Contradictory reports diverge in their use of various in vitro and in vivo assays. To consolidate these discordant findings,we compared the myeloid potential of 2 putative thymus seeding populations,common lymphoid progenitors (CLPs) and multipotent progenitors (MPPs),and the earliest intrathymic progenitor (DN1),using 2 in vitro assays and in vivo readouts. These assays gave contradictory results: CLP and DN1 displayed surprisingly robust myeloid potential on OP9-DL1 in vitro stromal cocultures but displayed little myeloid potential in vivo,as well as in methylcellulose cultures. MPP,on the other hand,displayed robust myeloid potential in all settings. We conclude that stromal cocultures reveal cryptic,but nonphysiologic,myeloid potentials of lymphoid progenitors,providing an explanation for contradictory findings in the field and underscoring the importance of using in vivo assays for the determination of physiologic lineage potentials.
View Publication
Ko J-YY et al. (APR 2014)
Biomaterials 35 11 3571--3581
In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells.
The purpose of this study was to investigate the chondrogenic features of human induced pluripotent stem cells (hiPSCs) and examine the differences in the chondrogenesis between hiPSCs and human bone marrow-derived MSCs (hBMMSCs). Embryoid bodies (EBs) were formed from undifferentiated hiPSCs. After EBs were dissociated into single cells,chondrogenic culture was performed in pellets and alginate hydrogel. Chondro-induced hiPSCs were implanted in osteochondral defects created on the patellar groove of immunosuppressed rats and evaluated after 12 weeks. The ESC markers NANOG,SSEA4 and OCT3/4 disappeared while the mesodermal marker BMP-4 appeared in chondro-induced hiPSCs. After 21 days of culture,greater glycosaminoglycan contents and better chondrocytic features including lacuna and abundant matrix formation were observed from chondro-induced hiPSCs compared to chondro-induced hBMMSCs. The expression of chondrogenic markers including SOX-9,type II collagen,and aggrecan in chondro-induced hiPSCs was comparable to or greater than chondro-induced hBMMSCs. A remarkably low level of hypertrophic and osteogenic markers including type X collagen,type I collagen and Runx-2 was noted in chondro-induced hiPSCs compared to chondro-induced hBMMSCs. hiPSCs had significantly greater methylation of several CpG sites in COL10A1 promoter than hBMMSCs in either undifferentiated or chondro-induced state,suggesting an epigenetic cause of the difference in hypertrophy. The defects implanted with chondro-induced hiPSCs showed a significantly better quality of cartilage repair than the control defects,and the majority of cells in the regenerated cartilage consisted of implanted hiPSCs. ?? 2014 Elsevier Ltd.
View Publication
Wang M et al. (MAR 2015)
ACS applied materials & interfaces 7 8 4560--4572
In Vitro Culture and Directed Osteogenic Differentiation of Human Pluripotent Stem Cells on Peptides-Decorated Two Dimensional Microenvironment
Human pluripotent stem cells (hPSCs) are a promising cell source with pluripotency and capacity to differentiate into all human somatic cell types. Designing simple and safe biomaterials with an innate ability to induce osteoblastic lineage from hPSCs is desirable to realize their clinical adoption in bone regenerative medicine. To address the issue,here we developed a fully defined synthetic peptides-decorated two dimensional (2D) microenvironment assisted via polydopamine (pDA) chemistry and subsequent carboxymethyl chitosan (CMC) grafting to enhance the culture and osteogenic potential of hPSCs in vitro. The hPSCs including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) were successfully cultured on the peptides-decorated surface without Matrigel- and ECM protein-coating and underwent promoted osteogenic differentiation in vitro,determined from the alkaline phosphate (ALP) activity,gene expression,and protein production as well as calcium deposit amount. It was found that directed osteogenic differentiation of hPSCs could be achieved through a peptides-decorated niche. This chemical-defined and safe 2D microenvironment which facilitates proliferation and osteo-differentiation of hPSCs,not only helps to accelerate the translational perspectives of hPSCs,but also provides tissue-specific functions such as directing stem cell differentiation commitment,having great potential in bone tissue engineering and presenting new avenues for bone regenerative medicine.
View Publication
Bruserud O et al. (JUN 2005)
Journal of cancer research and clinical oncology 131 6 377--84
In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.
PURPOSE: Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells,but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. METHODS: The seven osteosarcoma cell lines Cal72,SJSA-1,Saos-2,SK-ES-1,U2OS,143.98.2,and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). RESULTS: Although proliferation often was relatively low in serum-free media (X-vivo 10,X-vivo 15,X-vivo 20,Stem Span SFEM),some cell lines (Cal72,KHOS-32IH,Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However,all cell lines proliferated well in Stem Span with FCS,and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS),and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72,SJSA-1),and the chemokine release profile was very similar to the fibroblast lines Hs27 and HFL1. CONCLUSIONS: Serum-free culture media can be used for in vitro studies of several osteosarcoma cell lines,but the optimal medium varies between cell lines and thus depends on: (i) the cell lines to be investigated/compared; (ii) the functional characteristic that is evaluated (proliferation,cytokine release); and (iii) whether coculture experiments are included.
View Publication
Cipriano AF et al. (APR 2013)
Journal of Materials Science: Materials in Medicine 24 4 989--1003
In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells
Magnesium alloys have attracted great interest for medical applications due to their unique biodegradable capability and desirable mechanical properties. When designed for medical applications,these alloys must have suitable degradation properties,i.e.,their degradation rate should not exceed the rate at which the degradation products can be excreted from the body. Cellular responses and tissue integration around the Mg-based implants are critical for clinical success. Four magnesium–zinc–strontium (ZSr41) alloys were developed in this study. The degradation properties of the ZSr41 alloys and their cytocompatibility were studied using an in vitro human embryonic stem cell (hESC) model due to the greater sensitivity of hESCs to known toxicants which allows to potentially detect toxicological effects of new biomaterials at an early stage. Four distinct ZSr41 alloys with 4 wt% zinc and a series of strontium compositions (0.15,0.5,1,and 1.5 wt% Sr) were produced through metallurgical processing. Their degradation was characterized by measuring total mass loss of samples and pH change in the cell culture media. The concentration of Mg ions released from ZSr41 alloy into the cell culture media was analyzed using inductively coupled plasma atomic emission spectroscopy. Surface microstructure and composition before and after culturing with hESCs were characterized using field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Pure Mg was used as a control during cell culture studies. Results indicated that the Mg–Zn–Sr alloy with 0.15 wt% Sr provided slower degradation and improved cytocompatibility as compared with pure Mg control.
View Publication
Gutierrez-Ramos JC and Palacios R (OCT 1992)
Proceedings of the National Academy of Sciences of the United States of America 89 19 9171--5
In vitro differentiation of embryonic stem cells into lymphocyte precursors able to generate T and B lymphocytes in vivo.
Embryonic stem cells can be induced in vitro,by coculture with the stromal line RP.0.10 and a mixture of interleukins 3,6,and 7,to differentiate into T (Joro75+) and B (B-220+) lymphocyte progenitors and other (Thy-1+,PgP-1+,c-kit+,Joro75-,B-220-,F4/80-,Mac-1-) hemopoietic precursors. The progeny of in vitro-induced embryonic stem cells can reconstitute the lymphoid compartments of T- and B-lymphocyte-deficient scid mice and generate mature T and B lymphocytes in sublethally irradiated normal mice. Exogenous cytokines can dramatically alter the developmental fate of embryonic stem cells in culture. The in vitro system described here should facilitate the study of molecular events leading to cell-lineage commitment and to the formation of hemopoietic stem cells and their immediate lymphoid progeny.
View Publication
Keller GM (DEC 1995)
Current opinion in cell biology 7 6 862--9
In vitro differentiation of embryonic stem cells.
Under appropriate conditions in culture,embryonic stem cells will differentiate and form embryoid bodies that have been shown to contain cells of the hematopoietic,endothelial,muscle and neuronal lineages. Many aspects of the lineage-specific differentiation programs observed within the embryoid bodies reflect those found in the embryo,indicating that this model system provides access to early cell populations that develop in a normal fashion. Recent studies involving the differentiation of genetically altered embryonic stem cells highlight the potential of this in vitro differentiation system for defining the function of genes in early development.
View Publication
Dye BR et al. (MAR 2015)
eLife 4 e05098
In vitro generation of human pluripotent stem cell derived lung organoids.
Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here,we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids,which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung,organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing,we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles,suggesting that HLOs are an excellent model to study human lung development,maturation and disease.
View Publication
Lagar'Kova MA et al. (FEB 2012)
Bulletin of Experimental Biology and Medicine 152 4 516--518
In vitro histogenesis of human embryonic stem cells into retina components
We developed a protocol of in vitro differentiation of human embryonic stem cells into three-dimensional structures histologically and molecularly similar to the developing retina.
View Publication
Kokubu Y et al. (APR 2017)
Biochemical and biophysical research communications 486 2 577--583
In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.
Brain-derived microvascular endothelial cells (BMECs),which play a central role in blood brain barrier (BBB),can be used for the evaluation of drug transport into the brain. Although human BMEC cell lines have already been reported,they lack original properties such as barrier integrity. Pluripotent stem cells (PSCs) can be used for various applications such as regenerative therapy,drug screening,and pathological study. In the recent study,an induction method of BMECs from PSCs has been established,making it possible to more precisely study the in vitro human BBB function. Here,using induced pluripotent stem (iPS) cell-derived BMECs,we examined the effects of oxygen-glucose deprivation (OGD) and OGD/reoxygenation (OGD/R) on BBB permeability. OGD disrupted the barrier function,and the dysfunction was rapidly restored by re-supply of the oxygen and glucose. Interestingly,TNF-α,which is known to be secreted from astrocytes and microglia in the cerebral ischemia,prevented the restoration of OGD-induced barrier dysfunction in an apoptosis-independent manner. Thus,we could establish the in vitro BBB disease model that mimics the cerebral ischemia by using iPS cell-derived BMECs.
View Publication
Tian L et al. ( 2016)
1353 271--283
In Vitro Modeling of Alcohol-Induced Liver Injury using Human-Induced Pluripotent Stem Cells
Alcohol consumption has long been associated with a majority of liver diseases and has been found to influence both fetal and adult liver functions. In spite of being one of the major causes of morbidity and mortality in the world,currently,there are no effective strategies that can prevent or treat alcoholic liver disease (ALD),due to a lack of human-relevant research models. Recent success in generation of functionally active mature hepatocyte-like cells from human-induced pluripotent cells (iPSCs) enables us to better understand the effects of alcohol on liver functions. Here,we describe the method and effect of alcohol exposure on multistage hepatic cell types derived from human iPSCs,in an attempt to recapitulate the early stages of liver tissue injury associated with ALD. We exposed different stages of iPSC-induced hepatic cells to ethanol at a pathophysiological concentration. In addition to stage-specific molecular markers,we measured several key cellular parameters of hepatocyte injury,including apoptosis,proliferation,and lipid accumulation.
View Publication