Long non-coding RNAs as surrogate indicators for chemical stress responses in human-induced pluripotent stem cells.
In this study,we focused on two biological products as ideal tools for toxicological assessment: long non-coding RNAs (lncRNAs) and human-induced pluripotent stem cells (hiPSCs). lncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to cellular stresses. hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types,and they are free of the ethical issues associated with human embryonic stem cells. Here,we identified six novel lncRNAs (CDKN2B-AS1,MIR22HG,GABPB1-AS1,FLJ33630,LINC00152,and LINC0541471v2) that respond to model chemical stresses (cycloheximide,hydrogen peroxide,cadmium,or arsenic) in hiPSCs. Our results indicated that the lncRNAs responded to general and specific chemical stresses. Compared with typical mRNAs such as p53-related mRNAs,the lncRNAs highly and rapidly responded to chemical stresses. We propose that these lncRNAs have the potential to be surrogate indicators of chemical stress responses in hiPSCs.
View Publication
Prowse ABJ et al. (NOV 2010)
Biomaterials 31 32 8281--8288
Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media.
Human embryonic stem cells (hESC) are expected to provide revolutionary therapeutic applications and drug discovery technologies. In order for this to be achieved a reproducible,defined animal component free culture system is required for the scale-up production of undifferentiated hESC. In this work we have investigated the applicability of a recombinantly produced domain of human vitronectin as an extracellular matrix alternative to the common standards Geltrex or Matrigel. In addition we have validated an ascorbate free media capable of supporting CD30(low) populations of hESC through a multi-factorial analysis of bFGF and Activin A. The recombinant vitronectin domain combined with the ascorbate free media were capable of supporting 3 cell lines,MEL1,MEL2 and hES3 for 10 or more passages while maintaining hESC pluripotency markers and differentiation capacity. The culture method outlined here provides a platform for future investigation into growth factor and extracellular matrix effects on hESC maintenance prior to bioreactor scale-up.
View Publication
Sun N et al. (JAN 2009)
Nature protocols 4 8 1192--201
Long term non-invasive imaging of embryonic stem cells using reporter genes.
Development of non-invasive and accurate methods to track cell fate after delivery will greatly expedite transition of embryonic stem (ES) cell therapy to the clinic. In this protocol,we describe the in vivo monitoring of stem cell survival,proliferation and migration using reporter genes. We established stable ES cell lines constitutively expressing double fusion (DF; enhanced green fluorescent protein and firefly luciferase) or triple fusion (TF; monomeric red fluorescent protein,firefly luciferase and herpes simplex virus thymidine kinase (HSVtk)) reporter genes using lentiviral transduction. We used fluorescence-activated cell sorting to purify these populations in vitro,bioluminescence imaging and positron emission tomography (PET) imaging to track them in vivo and fluorescence immunostaining to confirm the results ex vivo. Unlike other methods of cell tracking,such as iron particle and radionuclide labeling,reporter genes are inherited genetically and can be used to monitor cell proliferation and survival for the lifetime of transplanted cells and their progeny.
View Publication
Mandal A et al. (FEB 2016)
In Vitro Cellular and Developmental Biology - Animal 52 2 243--251
Long-term culture and cryopreservation does not affect the stability and functionality of human embryonic stem cell-derived hepatocyte-like cells
Human embryonic stem cells (hESCs) are predicted to be an unlimited source of hepatocytes which can pave the way for applications such as cell replacement therapies or as a model of human development or even to predict the hepatotoxicity of drug compounds. We have optimized a 23-d differentiation protocol to generate hepatocyte-like cells (HLCs) from hESCs,obtaining a relatively pure population which expresses the major hepatic markers and is functional and mature. The stability of the HLCs in terms of hepato-specific marker expression and functionality was found to be intact even after an extended period of in vitro culture and cryopreservation. The hESC-derived HLCs have shown the capability to display sensitivity and an alteration in the level of CYP enzyme upon drug induction. This illustrates the potential of such assays in predicting the hepatotoxicity of a drug compound leading to advancement of pharmacology
View Publication
Nagai K-i et al. (APR 2010)
Biochemical and biophysical research communications 395 2 258--263
Long-term culture following ES-like gene-induced reprogramming elicits an aggressive phenotype in mutated cholangiocellular carcinoma cells.
BACKGROUND: We recently reported that gastrointestinal (GI) cancer cells can be reprogrammed to a pluripotent state by the ectopic expression of defined embryonic stem (ES)-like transcriptional factors. The induced pluripotent cancer (iPC) cells from GI cancer were sensitized to chemotherapeutic agents and differentiation-inducing treatment during a short-term culture,although a phenotype induced by long-term culture needs to be studied. METHODS: A long-term cultured (Lc)-iPC cells were produced in GI cancer cell lines by virus-mediated introduction of four ES-like genes-c-MYC,SOX2,OCT3/4,and KLF4-followed by a culture more than three months after iPC cells induction. An acquired state was studied by expression of immature-related surface antigens,Tra-1-60,Tra-1-81,Tra-2-49,and Ssea-4; and epigenetic trimethyl modification at lysine 4 of histone H3. Sensitivity to chemotherapeutic agents and tumorigenicity were studied in Lc-iPC cells. RESULTS: Whereas the introduction of defined factors of iPC cells once induced an immature state and sensitized cells to therapeutic reagents,the endogenous expression of the ES-like genes except for activated endogenous c-MYC was down-regulated in a long-term culture,suggesting a high magnitude of the reprogramming induction by defined factors and the requirement of therapeutic maintenance in Lc-iPC cells from cholangiocellular carcinoma HuCC-T1 cells,which harbor TP53(R175H) and KRAS(G12D). The Lc-iPC cells showed resistance to 5-fluorouracil in culture,and high tumorigenic ability with activated endogenous c-MYC in immunodeficient mice. CONCLUSION: The Lc-iPC cells from HuCC-T1 might be prone to an undesirable therapeutic response because of an association with the activated endogenous c-MYC. To consider the possible therapeutic approach in GI cancer,it would be necessary to develop a predictive method for evaluating the improper reprogramming-associated aggressive phenotype of iPC cells.
View Publication
Vegas AJ et al. (MAR 2016)
Nature medicine 22 3 306--311
Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice.
The transplantation of glucose-responsive,insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically,but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-$\$),which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However,clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic,immunocompetent animal model using human SC-$\$ SC-$\$ were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin,which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.
View Publication
Oh SKW et al. (MAY 2009)
Stem Cell Research 2 3 219--230
Long-term microcarrier suspension cultures of human embryonic stem cells
The conventional method of culturing human embryonic stem cells (hESC) is on two-dimensional (2D) surfaces,which is not amenable for scale up to therapeutic quantities in bioreactors. We have developed a facile and robust method for maintaining undifferentiated hESC in three-dimensional (3D) suspension cultures on matrigel-coated microcarriers achieving 2- to 4-fold higher cell densities than those in 2D colony cultures. Stable,continuous propagation of two hESC lines on microcarriers has been demonstrated in conditioned media for 6 months. Microcarrier cultures (MC) were also demonstrated in two serum-free defined media (StemPro and mTeSR1). MC achieved even higher cell concentrations in suspension spinner flasks,thus opening the prospect of propagation in controlled bioreactors. ?? 2009 Elsevier B.V. All rights reserved.
View Publication
Samper E et al. (APR 2002)
Blood 99 8 2767--75
Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells.
Telomere length must be tightly regulated in highly proliferative tissues,such as the lymphohematopoietic system. Under steady-state conditions,the levels and functionality of hematopoietic-committed or multipotent progenitors were not affected in late-generation telomerase-deficient mice (mTerc(-/-)) with critically short telomeres. Evaluation of self-renewal potential of mTerc(-/-) day-12 spleen colony-forming units demonstrated no alteration as compared with wildtype progenitors. However,the replating ability of mTerc(-/-) granulocyte-macrophage CFUs (CFU-GMs) was greatly reduced as compared with wildtype CFU-GMs,indicating a diminished capacity of late-generation mTerc(-/-) committed progenitors when forced to proliferate. Long-term bone marrow cultures of mTerc(-/-) bone marrow (BM) cells show a reduction in proliferative capacity; this defect can be mainly attributed to the hematopoietic,not to the stromal,mTerc(-/-) cells. In serial and competitive transplantations,mTerc(-/-) BM stem cells show reduced long-term repopulating capacity,concomitant with an increase in genetic instability compared with wildtype cells. Nevertheless,in competitive transplantations late-generation mTerc(-/-) precursors can occasionally overcome this proliferative impairment and reconstitute irradiated recipients. In summary,our results demonstrate that late-generation mTerc(-/-) BM cells with short telomeres,although exhibiting reduced proliferation ability and reduced long-term repopulating capacity,can still reconstitute myeloablated animals maintaining stem cell function.
View Publication
Rodin S et al. (JUN 2010)
Nature biotechnology 28 6 611--5
Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511.
We describe a system for culturing human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells on a recombinant form of human laminin-511,a component of the natural hES cell niche. The system is devoid of animal products and feeder cells and contains only one undefined component,human albumin. The hES cells self-renewed with normal karyotype for at least 4 months (20 passages),after which the cells could produce teratomas containing cell lineages of all three germ layers. When plated on laminin-511 in small clumps,hES cells spread out in a monolayer,maintaining cellular homogeneity with approximately 97% OCT4-positive cells. Adhesion of hES cells was dependent on alpha6beta1 integrin. The use of homogeneous monolayer hES or iPS cell cultures provides more controllable conditions for the design of differentiation methods. This xeno-free and feeder-free system may be useful for the development of cell lineages for therapeutic purposes.
View Publication
Deng Y et al. (NOV 2013)
Acta Biomaterialia 9 11 8840--8850
Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions
Realization of the full potential of human induced pluripotent stem cells (hiPSC) in clinical applications requires the development of well-defined culture conditions for their long-term growth and directed differentiation. This paper describes a novel fully defined synthetic peptide-decorated substrate that supports self-renewal of hiPSC in commercially available xeno-free,chemically defined medium. The Au surface was deposited by a poly(OEGMA-co-HEMA) film,using the surface-initiated polymerization method (SIP) with the further step of carboxylation. The hiPSC generated from umbilical cord mesenchymal cells were successfully cultured for 10 passages on the peptide-tethered poly(OEGMA-co-HEMA) brushes for the first time. Cells maintained their characteristic morphology,proliferation and expressed high levels of markers of pluripotency,similar to the cells cultured on Matrigel???. Moreover,the cell adhesion could be tuned by the pattern and peptide concentration on the substrate. This well-defined,xeno-free and safe substrate,which supports long-term proliferation and self-renewal of hiPSC,will not only help to accelerate the translational perspectives of hiPSC,but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation via SIP technology. ?? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
View Publication
Bao X et al. ( 2016)
Nature biomedical engineering 1
Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions.
The epicardium contributes both multi-lineage descendants and paracrine factors to the heart during cardiogenesis and cardiac repair,underscoring its potential for cardiac regenerative medicine. Yet little is known about the cellular and molecular mechanisms that regulate human epicardial development and regeneration. Here,we show that the temporal modulation of canonical Wnt signaling is sufficient for epicardial induction from 6 different human pluripotent stem cell (hPSC) lines,including a WT1-2A-eGFP knock-in reporter line,under chemically-defined,xeno-free conditions. We also show that treatment with transforming growth factor beta (TGF-β)-signalling inhibitors permitted long-term expansion of the hPSC-derived epicardial cells,resulting in a more than 25 population doublings of WT1+ cells in homogenous monolayers. The hPSC-derived epicardial cells were similar to primary epicardial cells both in vitro and in vivo,as determined by morphological and functional assays,including RNA-seq. Our findings have implications for the understanding of self-renewal mechanisms of the epicardium and for epicardial regeneration using cellular or small-molecule therapies.
View Publication
Higuchi A et al. (DEC 2015)
Scientific Reports 5 18136
Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity
The tentative clinical application of human pluripotent stem cells (hPSCs),such as human embryonic stem cells and human induced pluripotent stem cells,is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore,we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture,whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
View Publication