Jang J et al. (OCT 2014)
Stem Cells 32 10 2616--2625
Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells
Nuclear factor,erythroid 2-like 2 (Nrf2) is a master transcription factor for cellular defense against endogenous and exogenous stresses by regulating expression of many antioxidant and detoxification genes. Here,we show that Nrf2 acts as a key pluripotency gene and a regulator of proteasome activity in human embryonic stem cells (hESCs). Nrf2 expression is highly enriched in hESCs and dramatically decreases upon differentiation. Nrf2 inhibition impairs both the self-renewal ability of hESCs and re-establishment of pluripotency during cellular reprogramming. Nrf2 activation can delay differentiation. During early hESC differentiation,Nrf2 closely colocalizes with OCT4 and NANOG. As an underlying mechanism,our data show that Nrf2 regulates proteasome activity in hESCs partially through proteasome maturation protein (POMP),a proteasome chaperone,which in turn controls the proliferation of self-renewing hESCs,three germ layer differentiation and cellular reprogramming. Even modest proteasome inhibition skews the balance of early differentiation toward mesendoderm at the expense of an ectodermal fate by decreasing the protein level of cyclin D1 and delaying the degradation of OCT4 and NANOG proteins. Taken together,our findings suggest a new potential link between environmental stress and stemness with Nrf2 and the proteasome coordinately positioned as key mediators.
View Publication
Crist SA et al. (APR 2008)
Blood 111 7 3553--61
Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes.
Platelets are an abundant source of CD40 ligand (CD154),an immunomodulatory and proinflammatory molecule implicated in the onset and progression of several inflammatory diseases,including systemic lupus erythematosus (SLE),diabetes,and cardiovascular disease. Heretofore considered largely restricted to activated T cells,we initiated studies to investigate the source and regulation of platelet-associated CD154. We found that CD154 is abundantly expressed in platelet precursor cells,megakaryocytes. We show that CD154 is expressed in primary human CD34+ and murine hematopoietic precursor cells only after cytokine-driven megakaryocyte differentiation. Furthermore,using several established megakaryocyte-like cells lines,we performed promoter analysis of the CD154 gene and found that NFAT,a calcium-dependent transcriptional regulator associated with activated T cells,mediated both differentiation-dependent and inducible megakaryocyte-specific CD154 expression. Overall,these data represent the first investigation of the regulation of a novel source of CD154 and suggests that platelet-associated CD154 can be biochemically modulated.
View Publication
Driscoll CB et al. (DEC 2015)
Stem cell research & therapy 6 1 48
Nuclear reprogramming with a non-integrating human RNA virus.
INTRODUCTION Advances in the field of stem cells have led to novel avenues for generating induced pluripotent stem cells (iPSCs) from differentiated somatic cells. iPSCs are typically obtained by the introduction of four factors--OCT4,SOX2,KLF4,and cMYC--via integrating vectors. Here,we report the feasibility of a novel reprogramming process based on vectors derived from the non-integrating vaccine strain of measles virus (MV). METHODS We produced a one-cycle MV vector by substituting the viral attachment protein gene with the green fluorescent protein (GFP) gene. This vector was further engineered to encode for OCT4 in an additional transcription unit. RESULTS After verification of OCT4 expression,we assessed the ability of iPSC reprogramming. The reprogramming vector cocktail with the OCT4-expressing MV vector and SOX2-,KLF4-,and cMYC-expressing lentiviral vectors efficiently transduced human skin fibroblasts and formed iPSC colonies. Reverse transcription-polymerase chain reaction and immunostaining confirmed induction of endogenous pluripotency-associated marker genes,such as SSEA-4,TRA-1-60,and Nanog. Pluripotency of derived clones was confirmed by spontaneous differentiation into three germ layers,teratoma formation,and guided differentiation into beating cardiomyocytes. CONCLUSIONS MV vectors can induce efficient nuclear reprogramming. Given the excellent safety record of MV vaccines and the translational capabilities recently developed to produce MV-based vectors now used for cancer clinical trials,our MV vector system provides an RNA-based,non-integrating gene transfer platform for nuclear reprogramming that is amenable for immediate clinical translation.
View Publication
West JA et al. (AUG 2014)
Nature communications 5 4719
Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming.
Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs),induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique,we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly,most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements,including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators,including the reprogramming factors Klf4,Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered,exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes.
View Publication
Lorzadeh A et al. (NOV 2016)
Cell reports 17 8 2112--2124
Nucleosome Density ChIP-Seq Identifies Distinct Chromatin Modification Signatures Associated with MNase Accessibility.
Nucleosome position,density,and post-translational modification are widely accepted components of mechanisms regulating DNA transcription but still incompletely understood. We present a modified native ChIP-seq method combined with an analytical framework that allows MNase accessibility to be integrated with histone modification profiles. Application of this methodology to the primitive (CD34+) subset of normal human cord blood cells enabled genomic regions enriched in one versus two nucleosomes marked by histone 3 lysine 4 trimethylation (H3K4me3) and/or histone 3 lysine 27 trimethylation (H3K27me3) to be associated with their transcriptional and DNA methylation states. From this analysis,we defined four classes of promoter-specific profiles and demonstrated that a majority of bivalent marked promoters are heterogeneously marked at a single-cell level in this primitive cell type. Interestingly,extension of this approach to human embryonic stem cells revealed an altered relationship between chromatin modification state and nucleosome content at promoters,suggesting developmental stage-specific organization of histone methylation states.
View Publication
Yazdi PG et al. (AUG 2015)
PloS one 10 8 e0136314
Nucleosome Organization in Human Embryonic Stem Cells.
The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA,nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently,there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions,we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription�
View Publication
Takeda A et al. (JUL 2006)
Cancer research 66 13 6628--37
NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells.
NUP98-HOXA9,the chimeric protein resulting from the t(7;11)(p15;p15) chromosomal translocation,is a prototype of several NUP98 fusions that occur in myelodysplastic syndromes and acute myeloid leukemia. We examined its effect on differentiation,proliferation,and gene expression in primary human CD34+ hematopoietic cells. Colony-forming cell (CFC) assays in semisolid medium combined with morphologic examination and flow cytometric immunophenotyping revealed that NUP98-HOXA9 increased the numbers of erythroid precursors and impaired both myeloid and erythroid differentiation. In continuous liquid culture,cells transduced with NUP98-HOXA9 exhibited a biphasic growth curve with initial growth inhibition followed by enhanced long-term proliferation,suggesting an increase in the numbers of primitive self-renewing cells. This was confirmed by a dramatic increase in the numbers of long-term culture-initiating cells,the most primitive hematopoietic cells detectable in vitro. To understand the molecular mechanisms underlying the effects of NUP98-HOXA9 on hematopoietic cell proliferation and differentiation,oligonucleotide microarray analysis was done at several time points over 16 days,starting at 6 hours posttransduction. The early growth suppression was preceded by up-regulation of IFNbeta1 and accompanied by marked up-regulation of IFN-induced genes,peaking at 3 days posttransduction. In contrast,oncogenes such as homeobox transcription factors,FLT3,KIT,and WT1 peaked at 8 days or beyond,coinciding with increased proliferation. In addition,several putative tumor suppressors and genes associated with hematopoietic differentiation were repressed at later time points. These findings provide a comprehensive picture of the changes in proliferation,differentiation,and global gene expression that underlie the leukemic transformation of human hematopoietic cells by NUP98-HOXA9.
View Publication
Gurevich RM et al. (AUG 2004)
Blood 104 4 1127--36
NUP98-topoisomerase I acute myeloid leukemia-associated fusion gene has potent leukemogenic activities independent of an engineered catalytic site mutation.
Chromosomal rearrangements of the 11p15 locus have been identified in hematopoietic malignancies,resulting in translocations involving the N-terminal portion of the nucleoporin gene NUP98. Fifteen different fusion partner genes have been identified for NUP98,and more than one half of these are homeobox transcription factors. By contrast,the NUP98 fusion partner in t(11;20) is Topoisomerase I (TOP1),a catalytic enzyme recognized for its key role in relaxing supercoiled DNA. We now show that retrovirally engineered expression of NUP98-TOP1 in murine bone marrow confers a potent in vitro growth advantage and a block in differentiation in hematopoietic precursors,evidenced by a competitive growth advantage in liquid culture,increased replating efficient of colony-forming cells (CFCs),and a marked increase in spleen colony-forming cell output. Moreover,in a murine bone marrow transplantation model,NUP98-TOP1 expression led to a lethal,transplantable leukemia characterized by extremely high white cell counts,splenomegaly,and mild anemia. Strikingly,a mutation to a TOP1 site to inactivate the isomerase activity essentially left unaltered the growth-promoting and leukemogenic effects of NUP98-TOP1. These findings,together with similar biologic effects reported for NUP98-HOX fusions,suggest unexpected,overlapping functions of NUP98 fusion genes,perhaps related to common DNA binding properties.
View Publication
Ng WL et al. (JAN 2014)
Cell death & disease 5 1 e1024
OCT4 as a target of miR-34a stimulates p63 but inhibits p53 to promote human cell transformation
Human cell transformation is a key step for oncogenic development,which involves multiple pathways; however,the mechanism remains unclear. To test our hypothesis whether cell oncogenic transformation shares some mechanisms with the process of reprogramming non-stem cells to induced pluripotent stem cells (iPSC),we studied the relationship among the key factors for promoting or inhibiting iPSC in radiation-transformed human epithelial cell lines derived from different tissues (lung,breast and colon). We unexpectedly found that p63 and OCT4 were highly expressed (accompanied by low expressed p53 and miR-34a) in all transformed cell lines examined when compared with their non-transformed counterparts. We further elucidated the relationship of these factors: the 3p strand of miR-34a directly targeted OCT4 by binding to the 3′ untranslated region (3′-UTR) of OCT4 and,OCT4,in turn,stimulated p63 but inhibited p53 expression by binding to a specific region of the p63 or p53 promoter. Moreover,we revealed that the effects of OCT4 on promoting cell oncogenic transformation were by affecting p63 and p53. These results support that a positive loop exists in human cells: OCT4 upregulation as a consequence of inhibition of miR-34a,promotes p63 but suppresses p53 expression,which further stimulates OCT4 upregulation by downregulating miR-34a. This functional loop contributes significantly to cell transformation and,most likely,also to the iPSC process.
View Publication
Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through sirt1-mediated deacetylation
Oct4 is critical to maintain the pluripotency of human embryonic stem cells (hESCs); however,the underlying mechanism remains to be fully understood. Here,we report that silencing of Oct4 in hESCs leads to the activation of tumor suppressor p53,inducing the differentiation of hESCs since acute disruption of p53 in p53 conditional knockout (p53CKO) hESCs prevents the differentiation of hESCs after Oct4 depletion. We further discovered that the silencing of Oct4 significantly reduces the expression of Sirt1,a deacetylase known to inhibit p53 activity and the differentiation of ESCs,leading to increased acetylation of p53 at lysine 120 and 164. The importance of Sirt1 in mediating Oct4-dependent pluripotency is revealed by the finding that the ectopic expression of Sirt1 in Oct4-silenced hESCs prevents p53 activation and hESC differentiation. In addition,using knock-in approach,we revealed that the acetylation of p53 at lysine 120 and 164 is required for both stabilization and activity of p53 in hESCs. In summary,our findings reveal a novel role of Oct4 in maintaining the pluripotency of hESCs by suppressing pathways that induce differentiation. Considering that p53 suppresses pluripotency after DNA damage response in ESCs,our findings further underscore the stringent mechanism to coordinate DNA damage response pathways and pluripotency pathways in order to maintain the pluripotency and genomic stability of hESCs.
View Publication
Liu Y et al. (MAY 2011)
Nature protocols 6 5 640--55
OLIG gene targeting in human pluripotent stem cells for motor neuron and oligodendrocyte differentiation.
Pluripotent stem cells can be genetically labeled to facilitate differentiation studies. In this paper,we describe a gene-targeting protocol to knock in a GFP cassette into key gene loci in human pluripotent stem cells (hPSCs),and then use the genetically tagged hPSCs to guide in vitro differentiation,immunocytochemical and electrophysiological profiling and in vivo characterization after cell transplantation. The Olig transcription factors have key roles in the transcription regulatory pathways for the genesis of motor neurons (MNs) and oligodendrocytes (OLs). We have generated OLIG2-GFP hPSC reporter lines that reliably mark MNs and OLs for monitoring their sequential differentiation from hPSCs. The expression of the GFP reporter recapitulates the endogenous expression of OLIG genes. The in vitro characterization of fluorescence-activated cell sorting-purified cells is consistent with cells of the MN or OL lineages,depending on the stages at which they are collected. This protocol is efficient and reliable and usually takes 5-7 months to complete. The genetic tagging-differentiation methodology used herein provides a general framework for similar work for differentiation of hPSCs into other lineages.
View Publication
Varney ME et al. (JAN 2009)
Lipids in health and disease 8 9
Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation.
BACKGROUND: Omega 3 fatty acids have been found to inhibit proliferation,induce apoptosis,and promote differentiation in various cell types. The processes of cell survival,expansion,and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage,such as myeloproliferative diseases and myeloid leukemias. RESULTS: We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore,this had no adverse effect on peripheral white blood cell counts. CONCLUSION: Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.
View Publication