Yokoyama A et al. (JUL 2011)
Journal of cell science 124 Pt 13 2208--19
Proteolytically cleaved MLL subunits are susceptible to distinct degradation pathways.
The mixed lineage leukemia (MLL) proto-oncogenic protein is a histone-lysine N-methyltransferase that is produced by proteolytic cleavage and self-association of the respective functionally distinct subunits (MLL(N) and MLL(C)) to form a holocomplex involved in epigenetic transcriptional regulation. On the basis of studies in Drosophila it has been suggested that the separated subunits might also have distinct functions. In this study,we used a genetically engineered mouse line that lacked MLL(C) to show that the MLL(N)-MLL(C) holocomplex is responsible for MLL functions in various developmental processes. The stability of MLL(N) is dependent on its intramolecular interaction with MLL(C),which is mediated through the first and fourth plant homeodomain (PHD) fingers (PHD1 and PHD4) and the phenylalanine/tyrosine-rich (FYRN) domain of MLL(N). Free MLL(N) is destroyed by a mechanism that targets the FYRN domain,whereas free MLL(C) is exported to the cytoplasm and degraded by the proteasome. PHD1 is encoded by an alternatively spliced exon that is occasionally deleted in T-cell leukemia,and its absence produces an MLL mutant protein that is deficient for holocomplex formation. Therefore,this should be a loss-of-function mutant allele,suggesting that the known tumor suppression role of MLL may also apply to the T-cell lineage. Our data demonstrate that the dissociated MLL subunits are subjected to distinct degradation pathways and thus not likely to have separate functions unless the degradation mechanisms are inhibited.
View Publication
Tsolis KC et al. (JUN 2016)
Journal of Proteome Research 15 6 1995--2007
Proteome changes during transition from human embryonic to vascular progenitor cells
Human embryonic stem cells (hESCs) are promising in regenerative medicine (RM) due to their differentiation plasticity and proliferation potential. However,a major challenge in RM is the generation of a vascular system to support nutrient flow to newly synthesized tissues. Here we refined an existing method to generate tight vessels by differentiating hESCs in CD34(+) vascular progenitor cells using chemically defined media and growth conditions. We selectively purified these cells from CD34(-) outgrowth populations also formed. To analyze these differentiation processes,we compared the proteomes of the hESCs with those of the CD34(+) and CD34(-) populations using high resolution mass spectrometry,label-free quantification,and multivariate analysis. Eighteen protein markers validate the differentiated phenotypes in immunological assays; nine of these were also detected by proteomics and show statistically significant differential abundance. Another 225 proteins show differential abundance between the three cell types. Sixty-three of these have known functions in CD34(+) and CD34(-) cells. CD34(+) cells synthesize proteins implicated in endothelial cell differentiation and smooth muscle formation,which support the bipotent phenotype of these progenitor cells. CD34(-) cells are more heterogeneous synthesizing muscular/osteogenic/chondrogenic/adipogenic lineage markers. The remaining textgreater150 differentially abundant proteins in CD34(+) or CD34(-) cells raise testable hypotheses for future studies to probe vascular morphogenesis.
View Publication
Hughes CS et al. (OCT 2011)
Proteomics 11 20 3983--3991
Proteomic analysis of extracellular matrices used in stem cell culture.
Numerous matrices for the growth of human embryonic stem cells (hESC) in vitro have been described. However,their exact composition is typically unknown. Information on the components of these matrices will aid in the development of a fully defined growth surface for hESCs. These matrices typically consist of mixture of proteins present in a wide range of abundance making their characterization challenging. In this study,we performed the proteomic analysis of five previously uncharacterized matrices: CellStart,Human Basement Membrane Extract (Human BME),StemXVivo,Bridge Human Extracellular Matrix (BridgeECM),and mouse embryonic fibroblast conditioned matrix (MEF-CMTX). Based on a proteomics protocol optimized using lysates from HeLa cells,we undertook the analysis of the five complex extracellular matrix (ECM) samples using a combination of strong anion and cation exchange chromatography and SDS-PAGE. For each of these matrices,we identify numerous proteins,indicating their complex nature. We also compared these results with a similar proteomics analysis of the growth matrix,Matrigel™. From these analyses,we observed that fibronectin is a primary component of nearly all hESC supportive matrices. This observation led to the investigation of the suitability of fibronectin as a defined ECM for the growth of hESCs. We found that fibronectin promotes the maintenance of pluripotent H9 and CA1 hESCs in an undifferentiated state using mTeSR1 medium. This finding validates the utility of characterizing matrices used for hESC growth in revealing ECM components required for culturing hESCs in a universally applicable defined system.
View Publication
Poon E et al. (JUN 2015)
Circulation. Cardiovascular genetics 8 3 427--436
Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation
BACKGROUND Differentiation of pluripotent human embryonic stem cells (hESCs) to the cardiac lineage represents a potentially unlimited source of ventricular cardiomyocytes (VCMs),but hESC-VCMs are developmentally immature. Previous attempts to profile hESC-VCMs primarily relied on transcriptomic approaches,but the global proteome has not been examined. Furthermore,most hESC-CM studies focus on pathways important for cardiac differentiation,rather than regulatory mechanisms for CM maturation. We hypothesized that gene products and pathways crucial for maturation can be identified by comparing the proteomes of hESCs,hESC-derived VCMs,human fetal and human adult ventricular and atrial CMs. METHODS AND RESULTS Using two-dimensional-differential-in-gel electrophoresis,121 differentially expressed (textgreater1.5-fold; Ptextless0.05) proteins were detected. The data set implicated a role of the peroxisome proliferator-activated receptor $\$ in cardiac maturation. Consistently,WY-14643,a peroxisome proliferator-activated receptor $\$,increased fatty oxidative enzyme level,hyperpolarized mitochondrial membrane potential and induced a more organized morphology. Along this line,treatment with the thyroid hormone triiodothyronine increased the dynamic tension developed in engineered human ventricular cardiac microtissue by 3-fold,signifying their maturation. CONCLUSIONS We conclude that the peroxisome proliferator-activated receptor $\$ thyroid hormone pathways modulate the metabolism and maturation of hESC-VCMs and their engineered tissue constructs. These results may lead to mechanism-based methods for deriving mature chamber-specific CMs.
View Publication
Son M-Y et al. (JUL 2015)
Proteomics 15 13 2220--2229
Proteomic and network analysis of proteins regulated by REX1 in human embryonic stem cells.
Recent studies have suggested that REX1 (reduced expression 1) plays an important role in pluripotency,proliferation,and differentiation. However,the molecular mechanisms involved in REX1-dependent regulation of diverse cellular processes remain unclear. To elucidate the regulatory functions of REX1 in human embryonic stem cells (hESCs),comparative proteomic analysis was performed on REX1 RNAi specifically silenced hESCs. Analysis of the proteome via nano-LC-MS/MS identified 140 differentially expressed proteins (DEPs) displaying a textgreater2-fold difference in expression level between control and REX1 knockdown (KD) hESCs,which were then compared with transcriptome data and validated by quantitative real-time RT-PCR and Western blotting. These DEPs were analyzed by GO,pathway,and functional clustering analyses to determine the molecular functions of the proteins and pathways regulated by REX1. The REX1 KD-mediated DEPs mapped to major biological processes involved in the regulation of ribosome-mediated translation and mitochondrial function. Functional network analysis revealed a highly interconnected network among these DEPs and indicated that these interconnected proteins are predominantly involved in translation and the regulation of mitochondrial organization. These findings regarding REX1-mediated regulatory network have revealed the contributions of REX1 to maintaining the status of hESCs and have improved our understanding of the molecular events that underlie the fundamental properties of hESCs.
View Publication
Hughes CS et al. (FEB 2011)
Proteomics 11 4 675--90
Proteomics of human embryonic stem cells.
Human embryonic stem cells (hESCs) offer exciting potential in regenerative medicine for the treatment of a host of diseases including cancer,Alzheimer's and Parkinson's disease. They also provide insight into human development and disease and can be used as models for drug discovery and toxicity analyses. The key properties of hESCs that make them so promising for medical use are that they have the ability to self-renew indefinitely in culture and they are pluripotent,which means that they can differentiate into any of more than 200 human cell types. Since proteins are the effectors of cellular processes,it is important to investigate hESC expression at the protein level as well as at the transcript level. In addition,post-translational modifications,such as phosphorylation,may influence the activity of pivotal proteins in hESCs,and this information can only be determined by studying the proteome. In this review,we summarize the results obtained from several proteomics analyses of hESCs that have been reported in the last few years.
View Publication
Meyer C et al. ( 2017)
International journal of nanomedicine 12 3153--3170
Pseudotyping exosomes for enhanced protein delivery in mammalian cells.
Exosomes are cell-derived nanovesicles that hold promise as living vehicles for intracellular delivery of therapeutics to mammalian cells. This potential,however,is undermined by the lack of effective methods to load exosomes with therapeutic proteins and to facilitate their uptake by target cells. Here,we demonstrate how a vesicular stomatitis virus glycoprotein (VSVG) can both load protein cargo onto exosomes and increase their delivery ability via a pseudotyping mechanism. By fusing a set of fluorescent and luminescent reporters with VSVG,we show the successful targeting and incorporation of VSVG fusions into exosomes by gene transfection and fluorescence tracking. We subsequently validate our system by live cell imaging of VSVG and its participation in endosomes/exosomes that are ultimately released from transfected HEK293 cells. We show that VSVG pseudotyping of exosomes does not affect the size or distributions of the exosomes,and both the full-length VSVG and the VSVG without the ectodomain are shown to integrate into the exosomal membrane,suggesting that the ectodomain is not required for protein loading. Finally,exosomes pseudotyped with full-length VSVG are internalized by multiple-recipient cell types to a greater degree compared to exosomes loaded with VSVG without the ectodomain,confirming a role of the ectodomain in cell tropism. In summary,our work introduces a new genetically encoded pseudotyping platform to load and enhance the intracellular delivery of therapeutic proteins via exosome-based vehicles to target cells.
View Publication
Peng C et al. (JAN 2010)
Blood 115 3 626--35
PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice.
The tumor suppressor gene phosphatase and tensin homolog (PTEN) is inactivated in many human cancers. However,it is unknown whether PTEN functions as a tumor suppressor in human Philadelphia chromosome-positive leukemia that includes chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL) and is induced by the BCR-ABL oncogene. By using our mouse model of BCR-ABL-induced leukemias,we show that Pten is down-regulated by BCR-ABL in leukemia stem cells in CML and that PTEN deletion causes acceleration of CML development. In addition,overexpression of PTEN delays the development of CML and B-ALL and prolongs survival of leukemia mice. PTEN suppresses leukemia stem cells and induces cell-cycle arrest of leukemia cells. Moreover,PTEN suppresses B-ALL development through regulating its downstream gene Akt1. These results demonstrate a critical role of PTEN in BCR-ABL-induced leukemias and suggest a potential strategy for the treatment of Philadelphia chromosome-positive leukemia.
View Publication
Chan DN et al. ( 2012)
PLoS ONE 7 11 e50432
Ptk7 Marks the First Human Developmental EMT In Vitro
Epithelial to mesenchymal transitions (EMTs) are thought to be essential to generate diversity of tissues during early fetal development,but these events are essentially impossible to study at the molecular level in vivo in humans. The first EMT event that has been described morphologically in human development occurs just prior to generation of the primitive streak. Because human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) are thought to most closely resemble cells found in epiblast-stage embryos prior to formation of the primitive streak,we sought to determine whether this first human EMT could be modeled in vitro with pluripotent stem cells. The data presented here suggest that generating embryoid bodies from hESCs or hiPSCs drives a procession of EMT events that can be observed within 24-48 hours after EB generation. These structures possess the typical hallmarks of developmental EMTs,and portions also display evidence of primitive streak and mesendoderm. We identify PTK7 as a novel marker of this EMT population,which can also be used to purify these cells for subsequent analyses and identification of novel markers of human development. Gene expression analysis indicated an upregulation of EMT markers and ECM proteins in the PTK7+ population. We also find that cells that undergo this developmental EMT retain developmental plasticity as sorting,dissociation and re-plating reestablishes an epithelial phenotype.
View Publication
Ban K et al. (OCT 2013)
Circulation 128 17 1897--1909
Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA
BACKGROUND: Although methods for generating cardiomyocytes from pluripotent stem cells have been reported,current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here,we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs.backslashnbackslashnMETHOD AND RESULTS: Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs,an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes,a mouse cardiomyocyte cell line,but textless3% of 4 noncardiomyocyte cell types in flow cytometry analysis,which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes,which supports the specificity of MBs. Finally,MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures,and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics,which was verified by spontaneous beating,electrophysiological studies,and expression of cardiac proteins. When transplanted in a myocardial infarction model,MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors.backslashnbackslashnCONCLUSIONS: We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.
View Publication
Rodrigues G et al. ( 2015)
1283 137--145
Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.
Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs),and their neuronal progeny,will play an important role in disease modeling,drug screening tests,central nervous system development studies,and may even become valuable for regenerative medicine treatments. Nonetheless,it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs,and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here,we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days,and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS),leaving the NP population nearly free of PSCs.
View Publication