Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development.
The development of mature blood cells from hematopoietic stem cells requires coordinated activities of transcriptional networks. Transcriptional repressor growth factor independence 1 (Gfi-1) is required for the development of B cells,T cells,neutrophils,and for the maintenance of hematopoietic stem cell function. However,the mechanisms by which Gfi-1 regulates hematopoiesis and how Gfi-1 integrates into transcriptional networks remain unclear. Here,we provide evidence that Id2 is a transcriptional target of Gfi-1,and repression of Id2 by Gfi-1 is required for B-cell and myeloid development. Gfi-1 binds to 3 conserved regions in the Id2 promoter and represses Id2 promoter activity in transient reporter assays. Increased Id2 expression was observed in multipotent progenitors,myeloid progenitors,T-cell progenitors,and B-cell progenitors in Gfi-1(-/-) mice. Knockdown of Id2 expression or heterozygosity at the Id2 locus partially rescues the B-cell and myeloid development but not the T-cell development in Gfi-1(-/-) mice. These studies demonstrate a role of Id2 in mediating Gfi-1 functions in B-cell and myeloid development and provide a direct link between Gfi-1 and the B-cell transcriptional network by its ability to repress Id2 expression.
View Publication
Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency
Nuclear reprogramming enables patient-specific derivation of induced pluripotent stem (iPS) cells from adult tissue. Yet,iPS generation from patients with type 2 diabetes (T2D) has not been demonstrated. Here,we report reproducible iPS derivation of epidermal keratinocytes (HK) from elderly T2D patients. Transduced with human OCT4,SOX2,KLF4 and c-MYC stemness factors under serum-free and feeder-free conditions,reprogrammed cells underwent dedifferentiation with mitochondrial restructuring,induction of endogenous pluripotency genes - including NANOG,LIN28,and TERT,and down-regulation of cytoskeletal,MHC class I- and apoptosis-related genes. Notably,derived iPS clones acquired a rejuvenated state,characterized by elongated telomeres and suppressed senescence-related p15INK4b/p16INK4a gene expression and oxidative stress signaling. Stepwise guidance with lineage-specifying factors,including Indolactam V and GLP-1,redifferentiated HK-derived iPS clones into insulin-producing islet-like progeny. Thus,in elderly T2D patients,reprogramming of keratinocytes ensures a senescence-privileged status yielding iPS cells proficient for regenerative applications.
View Publication
Mandal PK and Rossi DJ (MAR 2013)
Nature protocols 8 3 568--82
Reprogramming human fibroblasts to pluripotency using modified mRNA
Induced pluripotent stem (iPS) cells hold the potential to revolutionize regenerative medicine through their capacity to generate cells of diverse lineages for future patient-specific cell-based therapies. To facilitate the transition of iPS cells to clinical practice,a variety of technologies have been developed for transgene-free pluripotency reprogramming. We recently reported efficient iPS cell generation from human fibroblasts using synthetic modified mRNAs. Here we describe a stepwise protocol for the generation of modified mRNA-derived iPS cells from primary human fibroblasts,focusing on the critical parameters including medium choice,quality control,and optimization steps needed for synthesizing modified mRNAs encoding reprogramming factors and introducing these into cells over the course of 2-3 weeks to ensure successful reprogramming. The protocol described herein is for reprogramming of human fibroblasts to pluripotency; however,the properties of modified mRNA make it a powerful platform for protein expression,which has broad applicability in directed differentiation,cell fate specification and therapeutic applications.
View Publication
Zhou S et al. ( 2017)
PloS one 12 1 e0169899
Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment.
The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner,mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However,the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover,we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects,and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells,inducing a dose-dependent increase in SOX2,OCT4 and Nanog proteins,leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells.
View Publication
Trevisan M et al. (JAN 2017)
International journal of molecular sciences 18 1
Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.
Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka,who first generated iPSCs by retroviral transduction of four reprogramming factors,several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However,the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study,three different strategies,based on retroviral vectors,episomal vectors,and Sendai virus vectors,were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells,including the expression of alkaline phosphatase and stemness maker genes,and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion,the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.
View Publication
Ma D et al. (JAN 2017)
Stem cell research 18 45--47
Reprogramming of a human induced pluripotent stem cell (iPSC) line from a Parkinson's disease patient with a R1628P variant in the LRRK2 gene.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 59-year old male Parkinson's disease (PD) patient with R1628P variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will provide a good resource for further pathophysiological studies of PD.
View Publication
Basma H et al. (MAR 2014)
American journal of physiology. Lung cellular and molecular physiology 306 6 L552--65
Reprogramming of COPD lung fibroblasts through formation of induced pluripotent stem cells.
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) eliminates many epigenetic modifications that characterize differentiated cells. In this study,we tested whether functional differences between chronic obstructive pulmonary disease (COPD) and non-COPD fibroblasts could be reduced utilizing this approach. Primary fibroblasts from non-COPD and COPD patients were reprogrammed to iPSCs. Reprogrammed iPSCs were positive for oct3/4,nanog,and sox2,formed embryoid bodies in vitro,and induced teratomas in nonobese diabetic/severe combined immunodeficient mice. Reprogrammed iPSCs were then differentiated into fibroblasts (non-COPD-i and COPD-i) and were assessed either functionally by chemotaxis and gel contraction or for gene expression by microarrays and compared with their corresponding primary fibroblasts. Primary COPD fibroblasts contracted three-dimensional collagen gels and migrated toward fibronectin less robustly than non-COPD fibroblasts. In contrast,redifferentiated fibroblasts from iPSCs derived from the non-COPD and COPD fibroblasts were similar in response in both functional assays. Microarray analysis identified 1,881 genes that were differentially expressed between primary COPD and non-COPD fibroblasts,with 605 genes differing by more than twofold. After redifferentiation,112 genes were differentially expressed between COPD-i and non-COPD-i with only three genes by more than twofold. Similar findings were observed with microRNA (miRNA) expression: 56 miRNAs were differentially expressed between non-COPD and COPD primary cells; after redifferentiation,only 3 miRNAs were differentially expressed between non-COPD-i and COPD-i fibroblasts. Interestingly,of the 605 genes that were differentially expressed between COPD and non-COPD fibroblasts,293 genes were changed toward control after redifferentiation. In conclusion,functional and epigenetic alterations of COPD fibroblasts can be reprogrammed through formation of iPSCs.
View Publication
Wang Y et al. (MAY 2017)
Stem cell reports
Reprogramming of Dermal Fibroblasts into Osteo-Chondrogenic Cells with Elevated Osteogenic Potency by Defined Transcription Factors.
Recent studies using defined transcription factors to convert skin fibroblasts into chondrocytes have raised the question of whether osteo-chondroprogenitors expressing SOX9 and RUNX2 could also be generated during the course of the reprogramming process. Here,we demonstrated that doxycycline-inducible expression of reprogramming factors (KLF4 [K] and c-MYC [M]) for 6 days were sufficient to convert murine fibroblasts into SOX9(+)/RUNX2(+) cellular aggregates and together with SOX9 (S) promoted the conversion efficiency when cultured in a defined stem cell medium,mTeSR. KMS-reprogrammed cells possess gene expression profiles akin to those of native osteo-chondroprogenitors with elevated osteogenic properties and can differentiate into osteoblasts and chondrocytes in vitro,but form bone tissue upon transplantation under the skin and in the fracture site of mouse tibia. Altogether,we provide a reprogramming strategy to enable efficient derivation of osteo-chondrogenic cells that may hold promise for cell replacement therapy not limited to cartilage but also for bone tissues.
View Publication
Park I-H et al. (JAN 2008)
Nature 451 7175 141--6
Reprogramming of human somatic cells to pluripotency with defined factors.
Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently,murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4,Sox2,Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors,we have derived iPS cells from fetal,neonatal and adult human primary cells,including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency,and establish a method whereby patient-specific cells might be established in culture.
View Publication
Haile Y et al. (MAR 2015)
PLoS ONE 10 3 e0119617
Reprogramming of HUVECs into induced pluripotent stem cells (HiPSCs), generation and characterization of HiPSC-derived neurons and astrocytes
Neurodegenerative diseases are characterized by chronic and progressive structural or functional loss of neurons. Limitations related to the animal models of these human diseases have impeded the development of effective drugs. This emphasizes the need to establish disease models using human-derived cells. The discovery of induced pluripotent stem cell (iPSC) technology has provided novel opportunities in disease modeling,drug development,screening,and the potential for patient-matched" cellular therapies in neurodegenerative diseases. In this study�
View Publication
Reprogramming of T cells from human peripheral blood.
Vogt-Koyanagi-Harada (VKH) disease (and sympathetic ophthalmia) is an ocular inflammatory disease that is considered to be a cell-mediated autoimmune disease against melanocytes. The purpose of this study was to determine the Ags specific to VKH disease and to develop an animal model of VKH disease. We found that exposure of lymphocytes from patients with VKH disease to peptides (30-mer) derived from the tyrosinase family proteins led to significant proliferation of the lymphocytes. Immunization of these peptides into pigmented rats induced ocular and extraocular changes that highly resembled human VKH disease,and we suggest that an experimental VKH disease was induced in these rats. We conclude that VKH disease is an autoimmune disease against the tyrosinase family proteins.
View Publication