Nakajima-Takagi Y et al. (JAN 2013)
Blood 121 3 447--458
Role of SOX17 in hematopoietic development from human embryonic stem cells
To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs),we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested,only Sox17,a gene encoding a transcription factor of the SOX family,promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However,they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis,hematopoiesis,and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs,thereby regulating hematopoietic development from hESCs/iPSCs.
View Publication
Alberta JA et al. (APR 2003)
Blood 101 7 2570--4
Role of the WT1 tumor suppressor in murine hematopoiesis.
The WT1 tumor-suppressor gene is expressed by many forms of acute myeloid leukemia. Inhibition of this expression can lead to the differentiation and reduced growth of leukemia cells and cell lines,suggesting that WT1 participates in regulating the proliferation of leukemic cells. However,the role of WT1 in normal hematopoiesis is not well understood. To investigate this question,we have used murine cells in which the WT1 gene has been inactivated by homologous recombination. We have found that cells lacking WT1 show deficits in hematopoietic stem cell function. Embryonic stem cells lacking WT1,although contributing efficiently to other organ systems,make only a minimal contribution to the hematopoietic system in chimeras,indicating that hematopoietic stem cells lacking WT1 compete poorly with healthy stem cells. In addition,fetal liver cells lacking WT1 have an approximately 75% reduction in erythroid blast-forming unit (BFU-E),erythroid colony-forming unit (CFU-E),and colony-forming unit-granulocyte macrophage-erythroid-megakaryocyte (CFU-GEMM). However,transplantation of fetal liver hematopoietic cells lacking WT1 will repopulate the hematopoietic system of an irradiated adult recipient in the absence of competition. We conclude that the absence of WT1 in hematopoietic cells leads to functional defects in growth potential that may be of consequence to leukemic cells that have alterations in the expression of WT1.
View Publication
Rowland TJ et al. (AUG 2010)
Stem cells and development 19 8 1231--1240
Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin.
Human induced pluripotent stem cells (iPSCs) hold promise as a source of adult-derived,patient-specific pluripotent cells for use in cell-based regenerative therapies. However,current methods of cell culture are tedious and expensive,and the mechanisms underlying cell proliferation are not understood. In this study,we investigated expression and function of iPSC integrin extracellular matrix receptors to better understand the molecular mechanisms of cell adhesion,survival,and proliferation. We show that iPSC lines generated using Oct-3/4,Sox-2,Nanog,and Lin-28 express a repertoire of integrins similar to that of hESCs,with prominent expression of subunits alpha5,alpha6,alphav,beta1,and beta5. Integrin function was investigated in iPSCs cultured without feeder layers on Matrigel or vitronectin,in comparison to human embryonic stem cells. beta1 integrins were required for adhesion and proliferation on Matrigel,as shown by immunological blockade experiments. On vitronectin,the integrin alphavbeta5 was required for initial attachment,but inhibition of both alphavbeta5 and beta1 was required to significantly decrease iPSC proliferation. Furthermore,iPSCs cultured on vitronectin for 9 passages retained normal karyotype,pluripotency marker expression,and capacity to differentiate in vitro. These studies suggest that vitronectin,or derivatives thereof,might substitute for Matrigel in a more defined system for iPSC culture.
View Publication
Martí et al. (APR 2016)
Molecular Neurobiology 53 5 2857--2868
RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death
RTP801 expression is induced by cellular stress and has a pro-apoptotic function in non-proliferating differentiated cells such as neurons. In several neurodegenerative disorders,including Parkinson's disease and Alzheimer's disease,elevated levels of RTP801 have been observed,which suggests a role for RTP801 in neuronal death. Neuronal death is also a pathological hallmark in Huntington's disease (HD),an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Currently,the exact mechanisms underlying mutant huntingtin (mhtt)-induced toxicity are still unclear. Here,we investigated whether RTP801 is involved in (mhtt)-induced cell death. Ectopic exon-1 mhtt elevated RTP801 mRNA and protein levels in nerve growth factor (NGF)-differentiated PC12 cells and in rat primary cortical neurons. In neuronal PC12 cells,mhtt also contributed to RTP801 protein elevation by reducing its proteasomal degradation rate,in addition to promoting RTP801 gene expression. Interestingly,silencing RTP801 expression with short hairpin RNAs (shRNAs) blocked mhtt-induced cell death in NGF-differentiated PC12 cells. However,RTP801 protein levels were not altered in the striatum of Hdh(Q7/Q111) and R6/1 mice,two HD models that display motor deficits but not neuronal death. Importantly,RTP801 protein levels were elevated in both neural telencephalic progenitors differentiated from HD patient-derived induced pluripotent stem cells and in the putamen and cerebellum of human HD postmortem brains. Taken together,our results suggest that RTP801 is a novel downstream effector of mhtt-induced toxicity and that it may be relevant to the human disease.
View Publication
Cammenga J et al. (JAN 2007)
Cancer research 67 2 537--45
Mutations in the RUNX1 gene are found at high frequencies in minimally differentiated acute myelogenous leukemia. In addition to null mutations,many of the mutations generate Runx1 DNA-binding (RDB) mutants. To determine if these mutants antagonize wild-type protein activity,cDNAs were transduced into murine bone marrow or human cord blood cells using retroviral vectors. Significantly,the RDB mutants did not act in a transdominant fashion in vivo to disrupt Runx1 activity in either T-cell or platelet development,which are highly sensitive to Runx1 dosage. However,RDB mutant expression impaired expansion and differentiation of the erythroid compartment in which Runx1 expression is normally down-regulated,showing that a RDB-independent function is incompatible with erythroid differentiation. Significantly,both bone marrow progenitors expressing RDB mutants or deficient for Runx1 showed increased replating efficiencies in vitro,accompanied by the accumulation of myeloblasts and dysplastic progenitors,but the effect was more pronounced in RDB cultures. Disruption of the interface that binds CBFbeta,an important cofactor of Runx1,did not impair RDB mutant replating activity,arguing against inactivation of Runx1 function by CBFbeta sequestration. We propose that RDB mutants antagonize Runx1 function in early progenitors by disrupting a critical balance between DNA-binding-independent and DNA-binding-dependent signaling.
View Publication
Nottingham WT et al. (DEC 2007)
Blood 110 13 4188--97
Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer.
The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny,its transcriptional regulation is of high interest but is largely undefined. In this study,we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly,transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo,suggesting that it functions as a crucial cis-regulatory element that integrates the Gata,Ets,and SCL transcriptional networks to initiate HSC generation.
View Publication
Kuo Y-H et al. (APR 2009)
Blood 113 14 3323--32
Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice.
The core-binding factor (CBF) is a master regulator of developmental and differentiation programs,and CBF alterations are frequently associated with acute leukemia. The role of the CBF member RUNX2 in hematopoiesis is poorly understood. Genetic evidence suggests that deregulation of Runx2 may cause myeloid leukemia in mice expressing the fusion oncogene Cbfb-MYH11. In this study,we show that sustained expression of Runx2 modulates Cbfbeta-smooth muscle myosin heavy chain (SMMHC)-mediated myeloid leukemia development. Expression of Runx2 is high in the hematopoietic stem cell compartment and decreases during myeloid differentiation. Sustained Runx2 expression hinders myeloid progenitor differentiation capacity and represses expression of CBF targets Csf1R,Mpo,Cebpd,the cell cycle inhibitor Cdkn1a,and myeloid markers Cebpa and Gfi1. In addition,full-length Runx2 cooperates with Cbfbeta-SMMHC in leukemia development in transplantation assays. Furthermore,we show that the nuclear matrix-targeting signal and DNA-binding runt-homology domain of Runx2 are essential for its leukemogenic activity. Conversely,Runx2 haplo-insufficiency delays the onset and reduces the incidence of acute myeloid leukemia. Together,these results indicate that Runx2 is expressed in the stem cell compartment,interferes with differentiation and represses CBF targets in the myeloid compartment,and modulates the leukemogenic function of Cbfbeta-SMMHC in mouse leukemia.
View Publication
Taylor RE et al. (FEB 2013)
Biomedical Microdevices 15 1 171--181
Sacrificial layer technique for axial force post assay of immature cardiomyocytes
Immature primary and stem cell-derived cardiomyocytes provide useful models for fundamental studies of heart development and cardiac disease,and offer potentialbackslashrbackslashnfor patient specific drug testing and differentiation protocols aimed at cardiac grafts. To assess their potential for augmenting heart function,and to gain insight into cardiac growth and disease,tissue engineers must quantify the contractile forces of these single cells. Currently,axial contractile forces of isolated adult heart cells can only be measuredbackslashrbackslashnby two-point methods such as carbon fiber techniques,which cannot be applied to neonatal and stem cell-derived heart cells because they are more difficult to handle and lack a persistent shape. Here we present a novel axial technique for measuring the contractile forces of isolated immature cardiomyocytes. We overcome cell manipulation and patterning challenges by using a thermoresponsive sacrificialbackslashrbackslashnsupport layer in conjunction with arrays of widely separated elastomeric microposts. Our approach has the potential to be high-throughput,is functionally analogous to current gold-standard axial force assays for adult heart cells,and prescribes elongated cell shapes without protein patterning. Finally,we calibrate these force posts withbackslashrbackslashnpiezoresistive cantilevers to dramatically reduce measurement error typical for soft polymer-based force assays. We report quantitative measurements of peak contractile forces up to 146 nN with post stiffness standard error (26 nN) far betterbackslashrbackslashnthan that based on geometry and stiffness estimates alone. The addition of sacrificial layers to future 2D and 3D cell culturebackslashrbackslashnplatforms will enable improved cell placement and the complex suspension of cells across 3D constructs.
View Publication
Aguila JR et al. (JUL 2011)
Blood 118 3 576--85
SALL4 is a robust stimulator for the expansion of hematopoietic stem cells.
HSCs are rare cells that have the unique ability to self-renew and differentiate into cells of all hematopoietic lineages. The lack of donors and current inability to rapidly and efficiently expand HSCs are roadblocks in the development of successful cell therapies. Thus,the challenge of ex vivo human HSC expansion remains a fertile and critically important area of investigation. Here,we show that either SALL4A- or SALL4B-transduced human HSCs obtained from the mobilized peripheral blood are capable of rapid and efficient expansion ex vivo by textgreater10 000-fold for both CD34(+)/CD38(-) and CD34(+)/CD38(+) cells in the presence of appropriate cytokines. We found that these cells retained hematopoietic precursor cell immunophenotypes and morphology as well as normal in vitro or vivo potential for differentiation. The SALL4-mediated expansion was associated with enhanced stem cell engraftment and long-term repopulation capacity in vivo. Also,we demonstrated that constitutive expression of SALL4 inhibited granulocytic differentiation and permitted expansion of undifferentiated cells in 32D myeloid progenitors. Furthermore,a TAT-SALL4B fusion rapidly expanded CD34(+) cells,and it is thus feasible to translate this study into the clinical setting. Our findings provide a new avenue for investigating mechanisms of stem cell self-renewal and achieving clinically significant expansion of human HSCs.
View Publication
Ma Y et al. (OCT 2006)
Blood 108 8 2726--35
SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice.
SALL4,a human homolog to Drosophila spalt,is a novel zinc finger transcriptional factor essential for development. We cloned SALL4 and its isoforms (SALL4A and SALL4B). Through immunohistochemistry and real-time reverse-transcription-polymerase chain reaction (RT-PCR),we demonstrated that SALL4 was constitutively expressed in human primary acute myeloid leukemia (AML,n = 81),and directly tested the leukemogenic potential of constitutive expression of SALL4 in a murine model. SALL4B transgenic mice developed myelodysplastic syndrome (MDS)-like features and subsequently AML that was transplantable. Increased apoptosis associated with dysmyelopoiesis was evident in transgenic mouse marrow and colony-formation (CFU) assays. Both isoforms could bind to beta-catenin and synergistically enhanced the Wnt/beta-catenin signaling pathway. Our data suggest that the constitutive expression of SALL4 causes MDS/AML,most likely through the Wnt/beta-catenin pathway. Our murine model provides a useful platform to study human MDS/AML transformation,as well as the Wnt/beta-catenin pathway's role in the pathogenesis of leukemia stem cells.
View Publication