Chen YS et al. (FEB 2012)
Stem cells translational medicine 1 2 83--95
Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells.
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs,heterogeneity,and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs,but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques,such as coculture,physical manipulation,sorting,or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First,epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days,iPSCs showed upregulation of mesodermal genes (MSX2,NCAM,HOXA2) and downregulation of pluripotency genes (OCT4,LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes,reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype,expressed high levels of vimentin and N-cadherin,and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs,whereas adipogenic differentiation was limited,as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture,providing a robust,clinically applicable,and efficient system for generating MSCs from human iPSCs.
View Publication
Fakler M et al. (FEB 2009)
Blood 113 8 1710--22
Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance.
Defects in apoptosis contribute to poor outcome in pediatric acute lymphoblastic leukemia (ALL),calling for novel strategies that counter apoptosis resistance. Here,we demonstrate for the first time that small molecule inhibitors of the antiapoptotic protein XIAP cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells. XIAP inhibitors at subtoxic concentrations,but not a structurally related control compound,synergize with TRAIL to trigger apoptosis and to inhibit clonogenic survival of acute leukemia cells,whereas they do not affect viability of normal peripheral blood lymphocytes,suggesting some tumor selectivity. Analysis of signaling pathways reveals that XIAP inhibitors enhance TRAIL-induced activation of caspases,loss of mitochondrial membrane potential,and cytochrome c release in a caspase-dependent manner,indicating that they promote a caspase-dependent feedback mitochondrial amplification loop. Of note,XIAP inhibitors even overcome Bcl-2-mediated resistance to TRAIL by enhancing Bcl-2 cleavage and Bak conformational change. Importantly,XIAP inhibitors kill leukemic blasts from children with ALL ex vivo and cooperate with TRAIL to induce apoptosis. In vivo,they significantly reduce leukemic burden in a mouse model of pediatric ALL engrafted in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Thus,XIAP inhibitors present a promising novel approach for apoptosis-based therapy of childhood ALL.
View Publication
Jangi M et al. (MAR 2017)
Proceedings of the National Academy of Sciences of the United States of America 114 12 E2347--E2356
SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage.
Spinal muscular atrophy (SMA),an autosomal recessive neuromuscular disease,is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product,survival of motor neuron (SMN),is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention,particularly of minor U12 introns,in the spinal cord of mice 30 d after SMA induction,which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response,manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns,high in GC content,served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures,leading to motor neuron death.
View Publication
挂图
SnapShot: GI Tract Development
Overview of gastrointestinal tract specification signals and summary of pancreatic cellular hierarchy and cell markers
Freude KK et al. (JUL 2011)
Journal of Biological Chemistry 286 27 24264--24274
Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells.
Human embryonic stem cells (hESCs) offer tremendous potential for not only treating neurological disorders but also for their ability to serve as vital reagents to model and investigate human disease. To further our understanding of a key protein involved in Alzheimer disease pathogenesis,we stably overexpressed amyloid precursor protein (APP) in hESCs. Remarkably,we found that APP overexpression in hESCs caused a rapid and robust differentiation of pluripotent stem cells toward a neural fate. Despite maintenance in standard hESC media,up to 80% of cells expressed the neural stem cell marker nestin,and 65% exhibited the more mature neural marker β-3 tubulin within just 5 days of passaging. To elucidate the mechanism underlying the effects of APP on neural differentiation,we examined the proteolysis of APP and performed both gain of function and loss of function experiments. Taken together,our results demonstrate that the N-terminal secreted soluble forms of APP (in particular sAPPβ) robustly drive neural differentiation of hESCs. Our findings not only reveal a novel and intriguing role for APP in neural lineage commitment but also identify a straightforward and rapid approach to generate large numbers of neurons from human embryonic stem cells. These novel APP-hESC lines represent a valuable tool to investigate the potential role of APP in development and neurodegeneration and allow for insights into physiological functions of this protein.
View Publication
Baksh D et al. (NOV 2005)
Blood 106 9 3012--9
Soluble factor cross-talk between human bone marrow-derived hematopoietic and mesenchymal cells enhances in vitro CFU-F and CFU-O growth and reveals heterogeneity in the mesenchymal progenitor cell compartment.
The homeostatic adult bone marrow (BM) is a complex tissue wherein physical and biochemical interactions serve to maintain a balance between the hematopoietic and nonhematopoietic compartments. To focus on soluble factor interactions occurring between mesenchymal and hematopoietic cells,a serum-free adhesion-independent culture system was developed that allows manipulation of the growth of both mesenchymal and hematopoietic human BM-derived progenitors and the balance between these compartments. Factorial experiments demonstrated a role for stem cell factor (SCF) and interleukin 3 (IL-3) in the concomitant growth of hematopoietic (CD45+) and nonhematopoietic (CD45-) cells,as well as their derivatives. Kinetic tracking of IL-3alpha receptor (CD123) and SCF receptor (CD117) expression on a sorted CD45- cell population revealed the emergence of CD45-CD123+ cells capable of osteogenesis. Of the total fibroblast colony-forming units (CFU-Fs) and osteoblast colony-forming units (CFU-O),approximately 24% of CFU-Fs and about 22% of CFU-Os were recovered from this population. Cell-sorting experiments demonstrated that the CD45+ cell population secreted soluble factors that positively affect the survival and proliferation of CFU-Fs and CFU-Os generated from the CD45- cells. Together,our results provide insight into the intercellular cytokine network between hematopoietic and mesenchymal cells and provide a strategy to mutually culture both mesenchymal and hematopoietic cells in a defined scalable bioprocess.
View Publication
Braun BS et al. (SEP 2006)
Blood 108 6 2041--4
Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo.
Somatic activation of a conditional targeted Kras(G12D) allele induces a fatal myeloproliferative disease in mice that closely models juvenile and chronic myelomonocytic leukemia. These mice consistently develop severe and progressive anemia despite adequate numbers of clonogenic erythroid progenitors in the bone marrow and expanded splenic hematopoiesis. Ineffective erythropoiesis is characterized by impaired differentiation. These results demonstrate that endogenous levels of oncogenic Ras have cell lineage-specific effects and support efforts to modulate Ras signaling for therapy of anemia in patients with myelodysplastic syndromes and myeloproliferative disorders.
View Publication
Gore A et al. (MAR 2011)
Nature 471 7336 63--7
Somatic coding mutations in human induced pluripotent stem cells.
Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods,it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous,nonsense or splice variants,and were enriched in genes mutated or having causative effects in cancers. At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies,whereas the rest occurred during or after reprogramming. Thus,hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use.
View Publication