Nath SC et al. (SEP 2016)
Bioprocess and biosystems engineering
Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture.
Human induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study,after determining the minimum inhibitory level of lactic acid for hiPSCs,a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically,about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis. The refined medium efficiently potentiated the proliferation of hiPS cells in adherent culture. When the refining system was used to refresh medium in suspension culture,a final cell density of (1.1 ± 0.1) × 10(6) cells mL(-1) was obtained,with 99.5 ± 0.2 % OCT 3/4 and 78.3 ± 1.1 % TRA-1-60 expression,on day 4 of culture. These levels of expression were similar to those observed in the conventional suspension culture. With this method,culture medium refinement by dialysis was established to remove toxic metabolites,recycle autocrine factors as well as other growth factors,and reduce the use of macromolecules for the expansion of hiPSCs in suspension culture.
View Publication
Nagaoka M et al. (JAN 2010)
BMC developmental biology 10 60
Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum.
BACKGROUND: To maintain pluripotency of human embryonic stem (huES) cells in feeder-free culture it has been necessary to provide a Matrigel substratum,which is a complex of poorly defined extracellular matrices and growth factors derived from mouse Engelbreth-Holm-Swarm sarcoma cells. Culture of stem cells under ill-defined conditions can inhibit the effectiveness of maintaining cells in a pluripotent state and reduce reproducibility of differentiation protocols. Moreover recent batches of Matrigel have been found to be contaminated with the single stranded RNA virus,Lactate Dehydrogenase Elevating Virus (LDEV),raising concerns regarding the safety of using stem cells that have been cultured on Matrigel in a therapeutic setting. To circumvent such concerns,we attempted to identify a recombinant matrix that could be used as an alternative to Matrigel for the culture of human pluripotent stem cells. huES and human induced pluripotent stem (hiPS) cells were grown on plates coated with a fusion protein consisting of E-cadherin and the IgG Fc domain using mTeSR1 medium.backslashnbackslashnRESULTS: Cells grown under these conditions maintained similar morphology and growth rate to those grown on Matrigel and retained all pluripotent stem cell features,including an ability to differentiate into multiple cell lineages in teratoma assays. We,therefore,present a culture system that maintains the pluripotency of huES and hiPS cells under completely defined conditions.backslashnbackslashnCONCLUSIONS: We propose that this system should facilitate growth of stem cells using good manufacturing practices (GMP),which will be necessary for the clinical use of pluripotent stem cells and their derivatives.
View Publication
Philonenko ES et al. (JAN 2011)
International review of cell and molecular biology 292 153--96
Current progress and potential practical application for human pluripotent stem cells.
Pluripotent stem cells are able to give rise to all cell types of the organism. There are two sources for human pluripotent stem cells: embryonic stem cells (ESCs) derived from surplus blastocysts created for in vitro fertilization and induced pluripotent stem cells (iPSCs) generated by reprogramming of somatic cells. ESCs have been an area of intense research during the past decade,and two clinical trials have been recently approved. iPSCs were created only recently,and most of the research has been focused on the iPSC generation protocols and investigation of mechanisms of direct reprogramming. The iPSC technology makes possible to derive pluripotent stem cells from any patient. However,there are a number of hurdles to be overcome before iPSCs will find a niche in practice. In this review,we discuss differences and similarities of the two pluripotent cell types and assess prospects for application of these cells in biomedicine.
View Publication
Jung J-H et al. (APR 2015)
Stem cells and development 24 8 948--61
CXCR2 and its related ligands play a novel role in supporting the pluripotency and proliferation of human pluripotent stem cells.
Basic fibroblast growth factor (bFGF) is a crucial factor sustaining human pluripotent stem cells (hPSCs). We designed this study to search the substitutive factors other than bFGF for the maintenance of hPSCs by using human placenta-derived conditioned medium without exogenous bFGF (hPCCM-),containing chemokine (C-X-C motif) receptor 2 (CXCR2) ligands,including interleukin (IL)-8 and growth-related oncogene $\$(GRO$\$),which were developed on the basis of our previous studies. First,we confirmed that IL-8 and/or GRO$\$ independent roles to preserve the phenotype of hPSCs. Then,we tried CXCR2 blockage of hPSCs in hPCCM- and verified the significant decrease of pluripotency-associated genes expression and the proliferation of hPSCs. Interestingly,CXCR2 suppression of hPSCs in mTeSR™1 containing exogenous bFGF decreased the proliferation of hPSCs while maintaining pluripotency characteristics. Lastly,we found that hPSCs proliferated robustly for more than 35 passages in hPCCM- on a gelatin substratum. Higher CXCR2 expression of hPSCs cultured in hPCCM- than those in mTeSR™1 was observable. Our findings suggest that CXCR2 and its related ligands might be novel factors comparable to bFGF supporting the characteristics of hPSCs and hPCCM- might be useful for the maintenance of hPSCs as well as for the accurate evaluation of CXCR2 role in hPSCs without the confounding influence of exogenous bFGF.
View Publication
Jung J-H et al. (MAY 2016)
Stem cells and development
CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm through Repression of mTOR, beta-catenin, and hTERT Activities.
On the basis of our previous report verifying that CXCR2 ligands in human placenta-conditioned medium (hPCCM) support human pluripotent stem cell (hPSC) propagation without exogenous bFGF,this study was designed to identify the effect of CXCR2 manipulation on the fate of hPSCs and the underlying mechanism,which had not been previously determined. We observed that CXCR2 inhibition in hPSCs induces predominant differentiation to mesoderm and endoderm with concomitant loss of hPSC characteristics and accompanying decreased expression of mTOR,beta-catenin,and hTERT. These phenomena are recapitulated in hPSCs propagated in conventional culture conditions including bFGF as well as those in hPCCM without exogenous bFGF,suggesting that the action of CXCR2 on hPSCs might not be associated with a bFGF-related mechanism. In addition,the specific CXCR2 ligand GROalpha markedly increased the expression of ectodermal markers in differentiation-committed embryoid bodies derived from hPSCs. This finding suggests that CXCR2 inhibition in hPSCs prohibits the propagation of hPSCs and leads to predominant differentiation to mesoderm and endoderm owing to the blockage of ectodermal differentiation. Taken together,our results indicate that CXCR2 preferentially supports the maintenance of hPSC characteristics as well as facilitates ectodermal differentiation after the commitment to differentiation,and that the mechanism might be associated with mTOR,beta-catenin,and hTERT activities.
View Publication
Zhang L et al. (NOV 2016)
Neuroscience 337 88--97
CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells.
G protein-coupled receptors (GPCRs) are involved in many fundamental cellular responses such as growth,death,movement,transcription and excitation. Their roles in human stem cell neural specialization are not well understood. In this study,we aimed to identify GPCRs that may play a role in the differentiation of human embryonic stem cells (hESCs) to neural stem cells (NSCs). Using a feeder-free hESC neural differentiation protocol,we found that the expression of several chemokine receptors changed dramatically during the hESC/NSC transition. Especially,the expression of CXCR4 increased approximately 50 folds in NSCs compared to the original hESCs. CXCR4 agonist SDF-1 promoted,whereas the antagonist AMD3100 delayed the neural induction process. In consistence with antagonizing CXCR4,knockdown of CXCR4 in hESCs also blocked the neural induction and cells with reduced CXCR4 were rarely positive for Nestin and Sox1-staining. Taken together,our results suggest that CXCR4 is involved in the neural induction process of hESC and it might be considered as a target to facilitate NSC production from hESCs in regenerative medicine.
View Publication
CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
OBJECTIVE: Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However,BMCs comprise a heterogeneous mixture of cells,and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4,we examined whether the expression of CXCR4 may identify a therapeutically active population of BMCs. METHODS AND RESULTS: Human CXCR4(+) and CXCR4(-) BMCs were sorted by magnetic beads. CXCR4(+) BMCs showed a significantly higher invasion capacity under basal conditions and after SDF-1 stimulation. Hematopoietic or mesenchymal colony-forming capacity did not differ between CXCR4(+) and CXCR4(-) BMCs. Injection of CXCR4(+) BMCs in mice after induction of hindlimb ischemia significantly improved the recovery of perfusion compared to injection of CXCR4(-) BMCs. Likewise,capillary density was significantly increased in CXCR4(+) BMC-treated mice. Because part of the beneficial effects of cell therapy were attributed to the release of paracrine effectors,we analyzed BMC supernatants for secreted factors. Importantly,supernatants of CXCR4(+) BMCs were enriched in the proangiogenic cytokines HGF and PDGF-BB. CONCLUSIONS: CXCR4(+) BMCs exhibit an increased therapeutic potential for blood flow recovery after acute ischemia. Mechanistically,their higher migratory capacity and their increased release of paracrine factors may contribute to enhanced tissue repair.
View Publication
Eash KJ et al. (MAY 2009)
Blood 113 19 4711--9
CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions.
The number of neutrophils in the blood is tightly regulated to ensure adequate protection against microbial pathogens while minimizing damage to host tissue. Neutrophil homeostasis in the blood is achieved through a balance of neutrophil production,release from the bone marrow,and clearance from the circulation. Accumulating evidence suggests that signaling by CXCL12,through its major receptor CXCR4,plays a key role in maintaining neutrophil homeostasis. Herein,we generated mice with a myeloid lineage-restricted deletion of CXCR4 to define the mechanisms by which CXCR4 signals regulate this process. We show that CXCR4 negatively regulates neutrophil release from the bone marrow in a cell-autonomous fashion. However,CXCR4 is dispensable for neutrophil clearance from the circulation. Neutrophil mobilization responses to granulocyte colony-stimulating factor (G-CSF),CXCL2,or Listeria monocytogenes infection are absent or impaired,suggesting that disruption of CXCR4 signaling may be a common step mediating neutrophil release. Collectively,these data suggest that CXCR4 signaling maintains neutrophil homeostasis in the blood under both basal and stress granulopoiesis conditions primarily by regulating neutrophil release from the bone marrow.
View Publication