Liang P et al. (APR 2013)
Circulation 127 16 1677--1691
Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity
BACKGROUND: Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds.backslashnbackslashnMETHODS AND RESULTS: Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome,familial hypertrophic cardiomyopathy,and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome,hypertrophic cardiomyopathy,and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go-related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs,but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations.backslashnbackslashnCONCLUSIONS: We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects,long QT syndrome,hypertrophic cardiomyopathy,and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go-related gene test or healthy control hiPSC-CM/hESC-CM screening assays.
View Publication
Wattanapanitch M et al. (SEP 2014)
PloS one 9 9 e106952
Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages.
Incurable neurological disorders such as Parkinson's disease (PD),Huntington's disease (HD),and Alzheimer's disease (AD) are very common and can be life-threatening because of their progressive disease symptoms with limited treatment options. To provide an alternative renewable cell source for cell-based transplantation and as study models for neurological diseases,we generated induced pluripotent stem cells (iPSCs) from human dermal fibroblasts (HDFs) and then differentiated them into neural progenitor cells (NPCs) and mature neurons by dual SMAD signaling inhibitors. Reprogramming efficiency was improved by supplementing the histone deacethylase inhibitor,valproic acid (VPA),and inhibitor of p160-Rho associated coiled-coil kinase (ROCK),Y-27632,after retroviral transduction. We obtained a number of iPS colonies that shared similar characteristics with human embryonic stem cells in terms of their morphology,cell surface antigens,pluripotency-associated gene and protein expressions as well as their in vitro and in vivo differentiation potentials. After treatment with Noggin and SB431542,inhibitors of the SMAD signaling pathway,HDF-iPSCs demonstrated rapid and efficient differentiation into neural lineages. Six days after neural induction,neuroepithelial cells (NEPCs) were observed in the adherent monolayer culture,which had the ability to differentiate further into NPCs and neurons,as characterized by their morphology and the expression of neuron-specific transcripts and proteins. We propose that our study may be applied to generate neurological disease patient-specific iPSCs allowing better understanding of disease pathogenesis and drug sensitivity assays.
View Publication
Pierre-Louis O et al. (OCT 2009)
Stem cells (Dayton,Ohio) 27 10 2552--62
Dual SP/ALDH functionalities refine the human hematopoietic Lin-CD34+CD38- stem/progenitor cell compartment.
Identification of prevalent specific markers is crucial to stem/progenitor cell purification. Determinants such as the surface antigens CD34 and CD38 are traditionally used to analyze and purify hematopoietic stem/progenitor cells (HSCs/HPCs). However,the variable expression of these membrane antigens poses some limitations to their use in HSC/HPC purification. Techniques based on drug/stain efflux through the ATP-binding cassette (ABC)G2 pump (side population [SP] phenotype) or on detection of aldehyde dehydrogenase (ALDH) activity have been independently developed and distinguish the SP and ALDH(Bright) (ALDH(Br)) cell subsets for their phenotype and proliferative capability. In this study,we developed a multiparametric flow cytometric method associating both SP and ALDH activities on human lineage negative (Lin(-)) bone marrow cells and sorted different cell fractions according to their SP/ALDH activity level. We find that Lin(-)CD34(+)CD38(Low/-) cells are found throughout the spectrum of ALDH expression and are enriched especially in ALDH(Br) cells when associated with SP functionality (SP/ALDH(Br) fraction). Furthermore,the SP marker identified G(0) cells in all ALDH fractions,allowing us to sort quiescent cells regardless of ALDH activity. Moreover,we show that,within the Lin(-)CD34(+)CD38(-)ALDH(Br) population,the SP marker identifies cells with higher primitive characteristics,in terms of stemness-related gene expression and in vitro and in vivo proliferative potential,than the Lin(-)CD34(+) CD38(-)ALDH(Br) main population cells. In conclusion,our study shows that the coexpression of SP and ALDH markers refines the Lin(-)CD34(+)CD38(-) hematopoietic compartment and identifies an SP/ALDH(Br) cell subset enriched in quiescent primitive HSCs/HPCs.
View Publication
Phadnis SM et al. (SEP 2015)
Scientific reports 5 14209
Dynamic and social behaviors of human pluripotent stem cells.
Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types,thus providing a platform for basic and clinical applications. However,pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here,we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival,self-renewal,and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored.
View Publication
Liang Y et al. (FEB 2013)
PLoS genetics 9 2 e1003308
Dynamic association of NUP98 with the human genome.
Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors,histone-modification enzymes,and mRNA processing proteins. Recent evidence suggests that nucleoporins,well known components that control nucleo-cytoplasmic trafficking,have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation,which initially has been described in fungi and flies,also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition,we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively,genes that are highly induced can interact with NUP98 in the nuclear interior,away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation,revealing a role of a nuclear pore protein in regulating developmental gene expression programs.
View Publication
Hawkins RD et al. (OCT 2011)
Cell Research 21 10 1393--1409
Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency.
Pluripotency,the ability of a cell to differentiate and give rise to all embryonic lineages,defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes,accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells,as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency,we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation,except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression,suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers,and observed much greater dynamics in chromatin modifications,especially H3K4me1 and H3K27ac,which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.
View Publication
Li J-YY et al. (AUG 2012)
PLoS genetics 8 8 e1002879
Dynamic distribution of linker histone H1.5 in cellular differentiation.
Linker histones are essential components of chromatin,but the distributions and functions of many during cellular differentiation are not well understood. Here,we show that H1.5 binds to genic and intergenic regions,forming blocks of enrichment,in differentiated human cells from all three embryonic germ layers but not in embryonic stem cells. In differentiated cells,H1.5,but not H1.3,binds preferentially to genes that encode membrane and membrane-related proteins. Strikingly,37% of H1.5 target genes belong to gene family clusters,groups of homologous genes that are located in proximity to each other on chromosomes. H1.5 binding is associated with gene repression and is required for SIRT1 binding,H3K9me2 enrichment,and chromatin compaction. Depletion of H1.5 results in loss of SIRT1 and H3K9me2,increased chromatin accessibility,deregulation of gene expression,and decreased cell growth. Our data reveal for the first time a specific and novel function for linker histone subtype H1.5 in maintenance of condensed chromatin at defined gene families in differentiated human cells.
View Publication