Wang G et al. (JAN 2017)
Nature protocols 12 1 88--103
Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
Genome editing of human induced pluripotent stem cells (hiPSCs) offers unprecedented opportunities for in vitro disease modeling and personalized cell replacement therapy. The introduction of Cas9-directed genome editing has expanded adoption of this approach. However,marker-free genome editing using standard protocols remains inefficient,yielding desired targeted alleles at a rate of ∼1-5%. We developed a protocol based on a doxycycline-inducible Cas9 transgene carried on a piggyBac transposon to enable robust and highly efficient Cas9-directed genome editing,so that a parental line can be expeditiously engineered to harbor many separate mutations. Treatment with doxycycline and transfection with guide RNA (gRNA),donor DNA and piggyBac transposase resulted in efficient,targeted genome editing and concurrent scarless transgene excision. Using this approach,in 7 weeks it is possible to efficiently obtain genome-edited clones with minimal off-target mutagenesis and with indel mutation frequencies of 40-50% and homology-directed repair (HDR) frequencies of 10-20%.
View Publication
Moore JJC et al. (JAN 2010)
Stem Cell Research & Therapy 1 3 23
Efficient, high-throughput transfection of human embryonic stem cells.
Genetic manipulation of human embryonic stem cells (hESC) has been limited by their general resistance to common methods used to introduce exogenous DNA or RNA. Efficient and high throughput transfection of nucleic acids into hESC would be a valuable experimental tool to manipulate these cells for research and clinical applications. We investigated the ability of two commercially available electroporation systems,the Nucleofection® 96-well Shuttle® System from Lonza and the Neon™ Transfection System from Invitrogen to efficiently transfect hESC. Transfection efficiency was measured by flow cytometry for the expression of the green fluorescent protein and the viability of the transfected cells was determined by an ATP catalyzed luciferase reaction. The transfected cells were also analyzed by flow cytometry for common markers of pluripotency. Both systems are capable of transfecting hESC at high efficiencies with little loss of cell viability. However,the reproducibility and the ease of scaling for high throughput applications led us to perform more comprehensive tests on the Nucleofection® 96-well Shuttle® System. We demonstrate that this method yields a large fraction of transiently transfected cells with minimal loss of cell viability and pluripotency,producing protein expression from plasmid vectors in several different hESC lines. The method scales to a 96-well plate with similar transfection efficiencies at the start and end of the plate. We also investigated the efficiency with which stable transfectants can be generated and recovered under antibiotic selection. Finally,we found that this method is effective in the delivery of short synthetic RNA oligonucleotides (siRNA) into hESC for knockdown of translation activity via RNA interference. Our results indicate that these electroporation methods provide a reliable,efficient,and high-throughput approach to the genetic manipulation of hESC.
View Publication
van Wilgenburg B et al. (AUG 2013)
PLoS ONE 8 8 e71098
Efficient, Long Term Production of Monocyte-Derived Macrophages from Human Pluripotent Stem Cells under Partly-Defined and Fully-Defined Conditions
Human macrophages are specialised hosts for HIV-1,dengue virus,Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens,because available myeloid cell lines are,by definition,not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined,feeder- and serum-free culture conditions and produces very consistent,pure,high yields across both human Embryonic Stem Cell (hESC) and multiple human induced Pluripotent Stem Cell (hiPSC) lines over time periods of up to one year. Cumulatively,up to ∼3×10(7) monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+),CD16(low),CD163(+)). Differentiation with M-CSF produces macrophages that are highly phagocytic,HIV-1-infectable,and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate,as they recognise foreign nucleic acids; the lentivector system described here overcomes this,as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells,surmounting issues of transgene silencing. Overall,the method we describe here is an efficient,effective,scalable system for the reproducible production and genetic modification of human macrophages,facilitating the interrogation of human macrophage biology.
View Publication
K. E. Hammerick et al. (feb 2011)
Tissue engineering. Part A 17 4-Mar 495--502
Elastic properties of induced pluripotent stem cells.
The recent technique of transducing key transcription factors into unipotent cells (fibroblasts) to generate pluripotent stem cells (induced pluripotent stem cells [iPSCs]) has significantly changed the stem cell field. These cells have great promise for many clinical applications,including that of regenerative medicine. Our findings show that iPSCs can be derived from human adipose-derived stromal cells (hASCs),a notable advancement in the clinical applicability of these cells. To investigate differences between two iPS cell lines (fibroblast-iPSC and hASC-iPSC),and also the gold standard human embryonic stem cell,we looked at cell stiffness as a possible indicator of cell differentiation-potential differences. We used atomic force microscopy as a tool to determine stem cell stiffness,and hence differences in material properties between cells. Human fibroblast and hASC stiffness was also ascertained for comparison. Interestingly,cells exhibited a noticeable difference in stiffness. From least to most stiff,the order of cell stiffness was as follows: hASC-iPSC,human embryonic stem cell,fibroblast-iPSC,fibroblasts,and,lastly,as the stiffest cell,hASC. In comparing hASC-iPSCs to their origin cell,the hASC,the reprogrammed cell is significantly less stiff,indicating that greater differentiation potentials may correlate with a lower cellular modulus. The stiffness differences are not dependent on cell culture density; hence,material differences between cells cannot be attributed solely to cell-cell constraints. The change in mechanical properties of the cells in response to reprogramming offers insight into how the cell interacts with its environment and might lend clues to how to efficiently reprogram cell populations as well as how to maintain their pluripotent state.
View Publication
Zhang J et al. (NOV 2011)
Stem Cell Reviews and Reports 7 4 987--996
Electrically Guiding Migration of Human Induced Pluripotent Stem Cells
A major road-block in stem cell therapy is the poor homing and integration of transplanted stem cells with the targeted host tissue. Human induced pluripotent stem (hiPS) cells are considered an excellent alternative to embryonic stem (ES) cells and we tested the feasibility of using small,physiological electric fields (EFs) to guide hiPS cells to their target. Applied EFs stimulated and guided migration of cultured hiPS cells toward the anode,with a stimulation threshold of textless30 mV/mm; in three-dimensional (3D) culture hiPS cells remained stationary,whereas in an applied EF they migrated directionally. This is of significance as the therapeutic use of hiPS cells occurs in a 3D environment. EF exposure did not alter expression of the pluripotency markers SSEA-4 and Oct-4 in hiPS cells. We compared EF-directed migration (galvanotaxis) of hiPS cells and hES cells and found that hiPS cells showed greater sensitivity and directedness than those of hES cells in an EF,while hES cells migrated toward cathode. Rho-kinase (ROCK) inhibition,a method to aid expansion and survival of stem cells,significantly increased the motility,but reduced directionality of iPS cells in an EF by 70-80%. Thus,our study has revealed that physiological EF is an effective guidance cue for the migration of hiPS cells in either 2D or 3D environments and that will occur in a ROCK-dependent manner. Our current finding may lead to techniques for applying EFs in vivo to guide migration of transplanted stem cells.
View Publication
Sharma S et al. (MAR 2010)
Cytometry. Part B,Clinical cytometry 78 2 123--9
Electronic volume, aldehyde dehydrogenase, and stem cell marker expression in cells from human peripheral blood apheresis samples.
BACKGROUND: Over-expression of aldehyde dehydrogenase and other stem cell markers is characteristic of cells with tumorigenic potential in NOD/SCID mice. Most of these studies have focused on metastatic cells in bone marrow and on solid tumors. There are no studies on correlation of marker expression with ALDH1 expression in cells from human peripheral blood apheresis (HPC-A) samples. METHODS: HPC-A samples from 44 patients were incubated with Aldefluor with or without the presence of aldehyde dehydrogenase inhibitor DEAB. Cells with high aldehyde dehydrogenase expression (ALDH1(bright)) were analyzed for stem/progenitor markers CD34,CD90,CD117,and CD133. Electronic volume measured by Coulter principal in a Quanta flow analyzer was correlated with ALDH1 and marker expression. RESULTS: In ALDH1(bright)/SSC(low) cells,0.13% of the cells had CD34(+) expression and three distinct populations were seen. Expression of CD90 was dim and the frequency of ALDH1(bright)/SSC(low)/CD90(dim) cells amongst the nonlineage depleted samples was 0.04%. CD117(dim-bright) expression was seen in 0.17% of the samples. Three distinct populations of cells with CD133 expression were seen in ALDH1(bright)/SSC(low) nonlineage depleted cells with a frequency of 0.28%. The ALDH1(bright)/CD90(dim) cells had the smallest mean electronic volume of 264.9 microm(3) when compared with cells with CD34(bright) expression (270.2 microm(3)) and ALDH1(dim)/CD90(dim) cells (223 microm(3)). CONCLUSIONS: ALDH1(bright)/SSC(low) cells show heterogeneity in expression of the four stem cell markers studied. The CD90 cells in both the ALDH1(bright) and ALDH1(dim) populations had the smallest mean electronic volume when compared with similar cells with CD117 expression.
View Publication
Ji J et al. (MAR 2012)
Stem cells (Dayton,Ohio) 30 3 435--40
Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells.
Mutations in human induced pluripotent stem cells (iPSCs) pose a risk for their clinical use due to preferential reprogramming of mutated founder cell and selection of mutations during maintenance of iPSCs in cell culture. It is unknown,however,if mutations in iPSCs are due to stress associated with oncogene expression during reprogramming. We performed whole exome sequencing of human foreskin fibroblasts and their derived iPSCs at two different passages. We found that in vitro passaging contributed 7% to the iPSC coding point mutation load,and ultradeep amplicon sequencing revealed that 19% of the mutations preexist as rare mutations in the parental fibroblasts suggesting that the remaining 74% of the mutations were acquired during cellular reprogramming. Simulation suggests that the mutation intensity during reprogramming is ninefold higher than the background mutation rate in culture. Thus the factor induced reprogramming stress contributes to a significant proportion of the mutation load of iPSCs.
View Publication
Matsuura K et al. (MAR 2015)
Tissue engineering. Part C,Methods 21 3 330--338
Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.
Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture,the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study,we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells,including cardiomyocytes and fibroblasts,using a methionine-free culture condition. When cultured in the methionine-free condition,human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition,gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore,in fabricated cardiac cell sheets,spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.
View Publication
Tateno H et al. (MAY 2015)
Stem Cell Reports 4 5 811--820
Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin-toxin fusion protein
The application of stem-cell-based therapies in regenerative medicine is hindered by the tumorigenic potential of residual human pluripotent stem cells. Previously,we identified a human pluripotent stem-cell-specific lectin probe,called rBC2LCN,by comprehensive glycome analysis using high-density lectin microarrays. Here we developed a recombinant lectin-toxin fusion protein of rBC2LCN with a catalytic domain of Pseudomonas aeruginosa exotoxin A,termed rBC2LCN-PE23,which could be expressed as a soluble form from the cytoplasm of Escherichia coli and purified to homogeneity by one-step affinity chromatography. rBC2LCN-PE23 bound to human pluripotent stem cells,followed by its internalization,allowing intracellular delivery of a cargo of cytotoxic protein. The addition of rBC2LCN-PE23 to the culture medium was sufficient to completely eliminate human pluripotent stem cells. Thus,rBC2LCN-PE23 has the potential to contribute to the safety of stem-cell-based therapies.
View Publication
Thomson JA et al. (NOV 1998)
Science (New York,N.Y.) 282 5391 1145--7
Embryonic stem cell lines derived from human blastocysts.
Human blastocyst-derived,pluripotent cell lines are described that have normal karyotypes,express high levels of telomerase activity,and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months,these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers,including gut epithelium (endoderm); cartilage,bone,smooth muscle,and striated muscle (mesoderm); and neural epithelium,embryonic ganglia,and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology,drug discovery,and transplantation medicine.
View Publication
Zhao W et al. (MAY 2012)
Molecules (Basel,Switzerland) 17 6 6196--6236
Embryonic stem cell markers.
Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal,therefore helping to accelerate the clinical application of ES cells. Unfortunately,different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells,especially tumor cells. Currently,the marker-based flow cytometry (FCM) technique and magnetic cell sorting (MACS) are the most effective cell isolating methods,and a detailed maker list will help to initially identify,as well as isolate ESCs using these methods. In the current review,we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules,such as lectins and peptides,which bind to ESC via affinity and specificity,are also summarized. In addition,we review several markers that overlap with tumor stem cells (TSCs),which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.
View Publication