Pettinato G et al. (DEC 2014)
Scientific reports 4 7402
Formation of well-defined embryoid bodies from dissociated human induced pluripotent stem cells using microfabricated cell-repellent microwell arrays.
A simple,scalable,and reproducible technology that allows direct formation of large numbers of homogeneous and synchronized embryoid bodies (EBs) of defined sizes from dissociated human induced pluripotent stem cells (hiPSCs) was developed. Non-cell-adhesive hydrogels were used to create round-bottom microwells to host dissociated hiPSCs. No Rho-associated kinase inhibitor (ROCK-i),or centrifugation was needed and the side effects of ROCK-i can be avoided. The key requirement for the successful EB formation in addition to the non-cell-adhesive round-bottom microwells is the input cell density per microwell. Too few or too many cells loaded into the microwells will compromise the EB formation process. In parallel,we have tested our microwell-based system for homogeneous hEB formation from dissociated human embryonic stem cells (hESCs). Successful production of homogeneous hEBs from dissociated hESCs in the absence of ROCK-i and centrifugation was achieved within an optimal range of input cell density per microwell. Both the hiPSC- and hESC-derived hEBs expressed key proteins characteristic of all the three developmental germ layers,confirming their EB identity. This novel EB production technology may represent a versatile platform for the production of homogeneous EBs from dissociated human pluripotent stem cells (hPSCs).
View Publication
Ali N et al. (APR 2009)
Blood 113 16 3690--5
Forward RNAi screens in primary human hematopoietic stem/progenitor cells.
The mechanisms regulating key fate decisions such as self-renewal and differentiation in hematopoietic stem and progenitor cells (HSPC) remain poorly understood. We report here a screening strategy developed to assess modulators of human hematopoiesis using a lentiviral short hairpin RNA (shRNA) library transduced into cord blood-derived stem/progenitor cells. To screen for modifiers of self-renewal/differentiation,we used the limited persistence of HSPCs under ex vivo culture conditions as a baseline for functional selection of shRNAs conferring enhanced maintenance or expansion of the stem/progenitor potential. This approach enables complex,pooled screens in large numbers of cells. Functional selection identified novel specific gene targets (exostoses 1) or shRNA constructs capable of altering human hematopoietic progenitor differentiation or stem cell expansion,respectively,thereby demonstrating the potential of this forward screening approach in primary human stem cell populations.
View Publication
Cao J et al. (JUN 2013)
Analyst 138 14 4147--4160
Fourier transform infrared microspectroscopy reveals that tissue culture conditions affect the macromolecular phenotype of human embryonic stem cells
We employed Fourier transform infrared (FTIR) microspectroscopy to investigate the effects of different tissue culture environments on the FTIR spectra of undifferentiated human embryonic stem cells (hESCs) and their differentiated progeny. First we tested whether there were any possible spectral artifacts resulting from the use of transflectance measurements by comparing them with transmission measurements and found no evidence of these concluding that the lack of any differences resulted from the homogeneity of the dried cytospun cellular monolayers. We found that hESCs that were enzymatically passaged onto mouse embryonic fibroblasts (MEFs) in KOSR based hESC medium,hESCs enzymatically passaged onto Matrigel in mTESR medium and hESCs mechanically passaged onto MEFs in KOSR-based hESC medium,possessed unique FTIR spectroscopic signatures that reflect differences in their macromolecular chemistry. Further,these spectroscopic differences persisted even upon differentiation towards mesendodermal lineages. Our results suggest that FTIR microspectroscopy is a powerful,objective,measurement modality that complements existing methods for studying the phenotype of hESCs and their progeny,particularly changes induced by the cellular environment.
View Publication
Bouchi R et al. (JAN 2014)
Nature communications 5 4242
FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures.
Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors,we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose-responsive,insulin-producing cells by ablation of transcription factor Foxo1. Here we show that FOXO1 is present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells,we show that FOXO1 inhibition using a dominant-negative mutant or lentivirus-encoded small hairpin RNA promotes generation of insulin-positive cells that express all markers of mature pancreatic β-cells,release C-peptide in response to secretagogues and survive in vivo following transplantation into mice. The findings raise the possibility of using gut-targeted FOXO1 inhibition or gut organoids as a source of insulin-producing cells to treat human diabetes.
View Publication
Zhang X et al. (SEP 2011)
Nature cell biology 13 9 1092--9
FOXO1 is an essential regulator of pluripotency in human embryonic stem cells.
Pluripotency of embryonic stem cells (ESCs) is defined by their ability to differentiate into three germ layers and derivative cell types and is established by an interactive network of proteins including OCT4 (also known as POU5F1; ref. ),NANOG (refs ,),SOX2 (ref. ) and their binding partners. The forkhead box O (FoxO) transcription factors are evolutionarily conserved regulators of longevity and stress response whose function is inhibited by AKT protein kinase. FoxO proteins are required for the maintenance of somatic and cancer stem cells; however,their function in ESCs is unknown. We show that FOXO1 is essential for the maintenance of human ESC pluripotency,and that an orthologue of FOXO1 (Foxo1) exerts a similar function in mouse ESCs. This function is probably mediated through direct control by FOXO1 of OCT4 and SOX2 gene expression through occupation and activation of their respective promoters. Finally,AKT is not the predominant regulator of FOXO1 in human ESCs. Together these results indicate that FOXO1 is a component of the circuitry of human ESC pluripotency. These findings have critical implications for stem cell biology,development,longevity and reprogramming,with potentially important ramifications for therapy.
View Publication
From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes.
Obesity has been suggested to be a low-grade systemic inflammatory state,therefore we studied the interaction between human adipocytes and monocytes via adipose tissue (AT)-derived capillary endothelium. Cells composing the stroma-vascular fraction (SVF) of human ATs were characterized by fluorescence-activated cell sorter (FACS) analysis and two cell subsets (resident macrophages and endothelial cells [ECs]) were isolated using antibody-coupled microbeads. Media conditioned by mature adipocytes maintained in fibrin gels were applied to AT-derived ECs. Thereafter,the expression of endothelial adhesion molecules was analyzed as well as the adhesion and transmigration of human monocytes. FACS analysis showed that 11% of the SVF is composed of CD14(+)/CD31(+) cells,characterized as resident macrophages. A positive correlation was found between the BMI and the percentage of resident macrophages,suggesting that fat tissue growth is associated with a recruitment of blood monocytes. Incubation of AT-derived ECs with adipocyte-conditioned medium resulted in the upregulation of EC adhesion molecules and the increased chemotaxis of blood monocytes,an effect mimicked by recombinant human leptin. These results indicate that adipokines,such as leptin,activate ECs,leading to an enhanced diapedesis of blood monocytes,and suggesting that fat mass growth might be linked to inflammatory processes.
View Publication
Musunuru K et al. (AUG 2010)
Nature 466 7307 714--9
From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus.
Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus,rs12740374,creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver,we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus,we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.
View Publication
Bahl V et al. (JUN 2016)
Toxicological sciences : an official journal of the Society of Toxicology 153 1 kfw102
From the Cover: Thirdhand Cigarette Smoke Causes Stress-Induced Mitochondrial Hyperfusion and Alters the Transcriptional Profile of Stem Cells.
Thirdhand cigarette smoke (THS) was recently recognized as an environmental health hazard; however,little is known about it effects on cells. Mitochondria are sensitive monitors of cell health and report on environmentally-induced stress. We tested the effects of low levels of THS extracted from terry cloth on mitochondrial morphology and function using stem cells with well-defined mitochondria. Concentrations of THS that did not kill cells caused stress-induced mitochondrial hyperfusion (SIMH),which was characterized by changes in mitochondrial morphology indicative of fusion,increased mitochondrial membrane potential (MMP),increased ATP levels,increased superoxide production,and increased oxidation of mitochondrial proteins. SIMH was accompanied by a decrease in Fis1 expression,a gene responsible for mitochondrial fission,and a decrease in apoptosis-related genes,including Aifm2,Bbc3 and Bid There was also down regulation of Ucp2,Ucp4 and Ucp5,genes that decrease MMP thereby reducing oxidative phosphorylation,while promoting glycolysis. These effects,which collectively accompany SIMH,are a pro-survival mechanism to rescue damaged mitochondria and protect cells from apoptosis. Prolonged exposure to THS caused a reduction in MMP and decreased cell proliferation,which likely leads to apoptosis.
View Publication