Stanurova J et al. (AUG 2016)
Scientific reports 6 August 30792
Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing.
Genomic imprinting is an epigenetic phenomenon resulting in parent-of-origin-specific gene expression that is regulated by a differentially methylated region. Gene mutations or failures in the imprinting process lead to the development of imprinting disorders,such as Angelman syndrome. The symptoms of Angelman syndrome are caused by the absence of functional UBE3A protein in neurons of the brain. To create a human neuronal model for Angelman syndrome,we reprogrammed dermal fibroblasts of a patient carrying a defined three-base pair deletion in UBE3A into induced pluripotent stem cells (iPSCs). In these iPSCs,both parental alleles are present,distinguishable by the mutation,and express UBE3A. Detailed characterization of these iPSCs demonstrated their pluripotency and exceptional stability of the differentially methylated region regulating imprinted UBE3A expression. We observed strong induction of SNHG14 and silencing of paternal UBE3A expression only late during neuronal differentiation,in vitro. This new Angelman syndrome iPSC line allows to study imprinted gene regulation on both parental alleles and to dissect molecular pathways affected by the absence of UBE3A protein.
View Publication
Li J-M et al. (FEB 2007)
Molecular endocrinology (Baltimore,Md.) 21 2 499--511
Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1.
Angiotensin II (Ang II) type 2 (AT2) receptors are abundantly expressed not only in the fetal brain where they probably contribute to brain development,but also in pathological conditions to protect the brain against stroke; however,the detailed mechanisms are unclear. Here,we demonstrated that AT2 receptor signaling induced neural differentiation via an increase in MMS2,one of the ubiquitin-conjugating enzyme variants. The AT2 receptor,MMS2,Src homology 2 domain-containing protein-tyrosine phosphatase 1 (SHP-1),and newly cloned AT2 receptor-interacting protein (ATIP) were highly expressed in fetal rat neurons and declined after birth. Ang II induced MMS2 expression in a dose-dependent manner,reaching a peak after 4 h of stimulation,and this effect was enhanced with AT1 receptor blocker,valsartan,but inhibited by AT2 receptor blocker PD123319. Moreover,we observed that an AT2 receptor agonist,CGP42112A,alone enhanced MMS2 expression. Neurons treated with small interfering RNA of MMS2 failed to exhibit neurite outgrowth and synapse formation. Moreover,the increase in AT2 receptor-induced MMS2 mRNA expression was enhanced by overexpression of ATIP but inhibited by small interfering RNA of SHP-1 and overexpression of catalytically dominant-negative SHP-1 or a tyrosine phosphatase inhibitor,sodium orthovanadate. After AT2 receptor stimulation,ATIP and SHP-1 were translocated into the nucleus after formation of their complex. Furthermore,increased MMS2 expression mediates the inhibitor of DNA binding 1 proteolysis and promotes DNA repair. These results provide a new insight into the contribution of AT2 receptor stimulation to neural differentiation via transactivation of MMS2 expression involving the association of ATIP and SHP-1.
View Publication
Bai R-Y et al. (SEP 2011)
Neuro-oncology 13 9 974--82
Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme.
Glioblastoma multiforme (GBM) is the most common and aggressive brain cancer,and despite treatment advances,patient prognosis remains poor. During routine animal studies,we serendipitously observed that fenbendazole,a benzimidazole antihelminthic used to treat pinworm infection,inhibited brain tumor engraftment. Subsequent in vitro and in vivo experiments with benzimidazoles identified mebendazole as the more promising drug for GBM therapy. In GBM cell lines,mebendazole displayed cytotoxicity,with half-maximal inhibitory concentrations ranging from 0.1 to 0.3 µM. Mebendazole disrupted microtubule formation in GBM cells,and in vitro activity was correlated with reduced tubulin polymerization. Subsequently,we showed that mebendazole significantly extended mean survival up to 63% in syngeneic and xenograft orthotopic mouse glioma models. Mebendazole has been approved by the US Food and Drug Administration for parasitic infections,has a long track-record of safe human use,and was effective in our animal models with doses documented as safe in humans. Our findings indicate that mebendazole is a possible novel anti-brain tumor therapeutic that could be further tested in clinical trials.
View Publication
Zhang M et al. (DEC 2015)
Biomaterials 72 163--171
Applications of stripe assay in the study of CXCL12-mediated neural progenitor cell migration and polarization.
The polarization and migration of neural progenitor cells (NPCs) are critical for embryonic brain development and neurogenesis after brain injury. Although stromal-derived factor-1α (SDF-1α,CXCL12) and its receptor CXCR4 are well-known to mediate the migration of NPCs in the developing brain,the dynamic cellular processes and structure-related molecular events remain elusive. Transwell and microfluidic-based assays are classical assays to effectively study cellular migration. However,both of them have limitations in the analysis of a single cell. In this study,we modified the stripe assay and extended its applications in the study of NPC polarization and intracellular molecular events associated with CXCL12-mediated migration. In response to localized CXCL12,NPCs formed lamellipodia in the stripe assay. Furthermore,CXCR4 and Rac1 quickly re-distributed to the area of lamellipodia,indicating their roles in NPC polarization upon CXCL12 stimulation. Although the chemokine stripes in the assay provided concentration gradients that can be best used to study cellular polarization and migration through immunocytochemistry,they can also generate live imaging data with comparable quality. In conclusion,stripe assay is a visual,dynamic and economical tool to study cellular mobility and its related molecule mechanisms.
View Publication
Amenduni M et al. (DEC 2011)
European Journal of Human Genetics 19131 10 1246--1255
ARTICLE iPS cells to model CDKL5-related disorders
Rett syndrome (RTT) is a progressive neurologic disorder representing one of the most common causes of mental retardation in females. To date mutations in three genes have been associated with this condition. Classic RTT is caused by mutations in the MECP2 gene,whereas variants can be due to mutations in either MECP2 or FOXG1 or CDKL5. Mutations in CDKL5 have been identified both in females with the early onset seizure variant of RTT and in males with X-linked epileptic encephalopathy. CDKL5 is a kinase protein highly expressed in neurons,but its exact function inside the cell is unknown. To address this issue we established a human cellular model for CDKL5-related disease using the recently developed technology of induced pluripotent stem cells (iPSCs). iPSCs can be expanded indefinitely and differentiated in vitro into many different cell types,including neurons. These features make them the ideal tool to study disease mechanisms directly on the primarily affected neuronal cells. We derived iPSCs from fibroblasts of one female with p.Q347X and one male with p.T288I mutation,affected by early onset seizure variant and X-linked epileptic encephalopathy,respectively. We demonstrated that female CDKL5-mutated iPSCs maintain X-chromosome inactivation and clones express either the mutant CDKL5 allele or the wild-type allele that serve as an ideal experimental control. Array CGH indicates normal isogenic molecular karyotypes without detection of de novo CNVs in the CDKL5-mutated iPSCs. Furthermore,the iPS cells can be differentiated into neurons and are thus suitable to model disease pathogenesis in vitro.
View Publication
Zhang Y et al. (APR 2015)
Oncotarget 6 12 9999--10015
Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer.
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis. An inflammatory microenvironment triggers the pronounced desmoplasia,the selection of cancer stem-like cells (CSCs) and therapy resistance. The anti-inflammatory drug aspirin is suggested to lower the risk for PDA and to improve the treatment,although available results are conflicting and the effect of aspirin to CSC characteristics and desmoplasia in PDA has not yet been investigated. We characterized the influence of aspirin on CSC features,stromal reactions and gemcitabine resistance. Four established and 3 primary PDA cell lines,non-malignant cells,3 patient tumor-derived CSC-enriched spheroidal cultures and tissues from patients who did or did not receive aspirin before surgery were analyzed using MTT assays,flow cytometry,colony and spheroid formation assays,Western blot analysis,antibody protein arrays,electrophoretic mobility shift assays (EMSAs),immunohistochemistry and in vivo xenotransplantation. Aspirin significantly induced apoptosis and reduced the viability,self-renewal potential,and expression of proteins involved in inflammation and stem cell signaling. Aspirin also reduced the growth and invasion of tumors in vivo,and it significantly prolonged the survival of mice with orthotopic pancreatic xenografts in combination with gemcitabine. This was associated with a decreased expression of markers for progression,inflammation and desmoplasia. These findings were confirmed in tissue samples obtained from patients who had or had not taken aspirin before surgery. Importantly,aspirin sensitized cells that were resistant to gemcitabine and thereby enhanced the therapeutic efficacy. Aspirin showed no obvious toxic effects on normal cells,chick embryos or mice. These results highlight aspirin as an effective,inexpensive and well-tolerated co-treatment to target inflammation,desmoplasia and CSC features PDA.
View Publication
Lee Y et al. (MAR 2012)
The EMBO journal 31 5 1177--89
ATR maintains select progenitors during nervous system development.
The ATR (ATM (ataxia telangiectasia mutated) and rad3-related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder,ATR-Seckel syndrome. To understand how ATR functions during neurogenesis,we conditionally deleted Atr broadly throughout the murine nervous system,or in a restricted manner in the dorsal telencephalon. Unexpectedly,in both scenarios,Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr-deficient embryonic cerebellar external germinal layer underwent p53- (and p16(Ink4a/Arf))-independent proliferation arrest,other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs,in the nervous system,p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion,supporting non-overlapping physiological roles for these related DNA damage-response kinases in the brain. Rather than an essential general role in preventing replication stress,our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis.
View Publication
Buczkowicz P et al. (MAY 2013)
Brain pathology (Zurich,Switzerland) 23 3 244--53
Aurora kinase B is a potential therapeutic target in pediatric diffuse intrinsic pontine glioma.
Pediatric high-grade astrocytomas (HGAs) account for 15-20% of all pediatric central nervous system tumors. These neoplasms predominantly involve the supratentorial hemispheres or the pons--diffuse intrinsic pontine gliomas (DIPG). Assumptions that pediatric HGAs are biologically similar to adult HGAs have recently been challenged,and the development of effective therapeutic modalities for DIPG and supratentorial HGA hinges on a better understanding of their biological properties. Here,20 pediatric HGAs (9 DIPGs and 11 supratentorial HGAs) were subject to gene expression profiling following approval by the research ethics board at our institution. Many of these tumors showed expression signatures composed of genes that promote G1/S and G2/M cell cycle progression. In particular,Aurora kinase B (AURKB) was consistently and highly overexpressed in 6/9 DIPGs and 8/11 HGAs. Array data were validated using quantitative real-time PCR and immunohistochemistry,as well as cross-validation of our data set with previously published series. Inhibition of Aurora B activity in DIPG and in pediatric HGA cell lines resulted in growth arrest accompanied by morphological changes,cell cycle aberrations,nuclear fractionation and polyploidy as well as a reduction in colony formation. Our data highlight Aurora B as a potential therapeutic target in DIPG.
View Publication
Barmada SJ et al. (AUG 2014)
Nature Chemical Biology 10 8 677--685
Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models.
Nature Chemical Biology 10,677 (2014). doi:10.1038/nchembio.1563
View Publication
Saporta MA et al. (JAN 2015)
Experimental neurology 263 190--199
Axonal Charcot-Marie-Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties
OBJECTIVE Charcot-Marie-Tooth (CMT) disease is a group of inherited peripheral neuropathies associated with mutations or copy number variations in over 70 genes encoding proteins with fundamental roles in the development and function of Schwann cells and peripheral axons. Here,we used iPSC-derived cells to identify common pathophysiological mechanisms in axonal CMT. METHODS iPSC lines from patients with two distinct forms of axonal CMT (CMT2A and CMT2E) were differentiated into spinal cord motor neurons and used to study axonal structure and function and electrophysiological properties in vitro. RESULTS iPSC-derived motor neurons exhibited gene and protein expression,ultrastructural and electrophysiological features of mature primary spinal cord motor neurons. Cytoskeletal abnormalities were found in neurons from a CMT2E (NEFL) patient and corroborated by a mouse model of the same NEFL point mutation. Abnormalities in mitochondrial trafficking were found in neurons derived from this patient,but were only mildly present in neurons from a CMT2A (MFN2) patient. Novel electrophysiological abnormalities,including reduced action potential threshold and abnormal channel current properties were observed in motor neurons derived from both of these patients. INTERPRETATION Human iPSC-derived motor neurons from axonal CMT patients replicated key pathophysiological features observed in other models of MFN2 and NEFL mutations,including abnormal cytoskeletal and mitochondrial dynamics. Electrophysiological abnormalities found in axonal CMT iPSC-derived human motor neurons suggest that these cells are hyperexcitable and have altered sodium and calcium channel kinetics. These findings may provide a new therapeutic target for this group of heterogeneous inherited neuropathies.
View Publication
Elliott E and Ginzburg I (JAN 2009)
FEBS letters 583 1 229--34
BAG-1 is preferentially expressed in neuronal precursor cells of the adult mouse brain and regulates their proliferation in vitro.
BAG-1 protein has been well characterized as necessary for proper neuronal development. However,little is known about the function of BAG-1 in the adult brain. In this work,the expression and localization of BAG-1 in the mature mouse brain was studied. The levels of both BAG-1 isoforms decrease significantly in the brain during development. BAG-1 was found preferentially expressed in Neuronal Precursor Cells (NPCs) in the two major niches of neurogenesis. Lentiviral mediated overexpression of BAG-1 increased the proliferation rate of cultured NPCs. In addition,depletion of BAG-1 from NPCs induced a decrease in NPCs proliferation in the presence of a stress hormone,corticosterone. These data suggest a role for BAG-1 in mechanisms of neurogenesis in the adult mouse brain.
View Publication
Khaled WT et al. (JAN 2015)
Nature communications 6 5987
BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells.
Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other types of breast cancer. The molecular and cellular mechanisms underlying TNBC pathology are not fully understood. Here,we report that the transcription factor BCL11A is overexpressed in TNBC including basal-like breast cancer (BLBC) and that its genomic locus is amplified in up to 38% of BLBC tumours. Exogenous BCL11A overexpression promotes tumour formation,whereas its knockdown in TNBC cell lines suppresses their tumourigenic potential in xenograft models. In the DMBA-induced tumour model,Bcl11a deletion substantially decreases tumour formation,even in p53-null cells and inactivation of Bcl11a in established tumours causes their regression. At the cellular level,Bcl11a deletion causes a reduction in the number of mammary epithelial stem and progenitor cells. Thus,BCL11A has an important role in TNBC and normal mammary epithelial cells. This study highlights the importance of further investigation of BCL11A in TNBC-targeted therapies.
View Publication